Bài 1.42 trang 22 SBT giải tích 12
Giải bài 1.42 trang 22 sách bài tập giải tích 12. Giá trị nhỏ nhất của hàm số...
Đề bài
Giá trị nhỏ nhất của hàm số \(f\left( x \right) = {x^3} + 3{x^2} - 9x - 7\) trên đoạn \(\left[ { - 4;3} \right]\) bằng:
A. \( - 5\) B. \(0\)
C. \(7\) D. \( - 12\)
Phương pháp giải - Xem chi tiết
- Tính \(y'\) và tìm nghiệm trong đoạn \(\left[ { - 4;3} \right]\) của \(y' = 0\).
- Tính giá trị của hàm số tại \( - 4,3\) và các điểm tìm được ở trên.
- So sánh các kết quả và kết luận.
Lời giải chi tiết
Ta có: \(f'\left( x \right) = 3{x^2} + 6x - 9\); \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1 \in \left[ { - 4;3} \right]\\x = - 3 \in \left[ { - 4;3} \right]\end{array} \right.\)
Mà \(f\left( { - 4} \right) = 13,f\left( { - 3} \right) = 20,\) \(f\left( 1 \right) = - 12,f\left( 3 \right) = 20\).
Vậy \(\mathop {\min }\limits_{\left[ { - 4;3} \right]} f\left( x \right) = - 12\).
Chọn D.
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 1.42 trang 22 SBT giải tích 12 timdapan.com"