Giải bài 1 trang 86 SGK Toán 10 tập 2 – Cánh diều

Xét vị trí tương đối của mỗi cặp đường thẳng sau


Đề bài

Xét vị trí tương đối của mỗi cặp đường thẳng sau

a) \({d_1}:3x + 2y--5 = 0\) và \({d_2}:x - 4y + 1 = 0\) ;

b) \({d_3}:x - 2y + 3 = 0\) và \({d_4}: - {\rm{ }}2x + 4y + 10 = 0\) ;

c) \({d_5}:4x + 2y - 3 = 0\) và \({d_6}:\left\{ \begin{array}{l}x =  - \frac{1}{2} + t\\y = \frac{5}{2} - 2t\end{array} \right.\)

Phương pháp giải - Xem chi tiết

Giải hệ phương trình giao điểm:

Hệ phương trình có nghiệm \( \Rightarrow \) cắt nhau

Hệ phương trình vô nghiệm \( \Rightarrow \) song song

Hệ phương trình vô số nghiệm \( \Rightarrow \) trùng nhau

Lời giải chi tiết

a) Tọa độ giao điểm của hai đường thẳng \({d_1},{d_2}\) là nghiệm của hệ phương trình:

\(\left\{ \begin{array}{l}3x + 2y - 5 = 0\\x - 4y + 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{9}{7}\\y = \frac{4}{7}\end{array} \right.\)

Hệ phương trình có nghiệm duy nhất nên 2 đường thẳng cắt nhau.

b) Tọa độ giao điểm của hai đường thẳng \({d_3},{d_4}\) là nghiệm của hệ phương trình:

\(\left\{ \begin{array}{l}x - 2y + 3 = 0\\ - 2x + 4y + 10 = 0\end{array} \right.\) .

Hệ phương trình vô nghiệm.nên 2 đường thẳng song song với nhau

c) Tọa độ giao điểm của hai đường thẳng \({d_5},{d_6}\) tương ứng với t thỏa mãn phương trình:

\(4\left( { - \frac{1}{2} + t} \right) + 2\left( {\frac{5}{2} - 2t} \right) - 3 = 0 \Leftrightarrow 0t = 0\) .

Phương trình này có nghiệm với mọi t. Do đó \({d_5} \equiv {d_6}\).



Từ khóa phổ biến