Giải bài 1 trang 19 SGK Toán 10 tập 2 – Cánh diều
Khai triển các biểu thức sau:
Đề bài
Khai triển các biểu thức sau:
a) \({\left( {2x + 1} \right)^4}\)
b)\({\left( {3y - 4} \right)^4}\)
c)\({\left( {x + \frac{1}{2}} \right)^4}\)
d)\({\left( {x - \frac{1}{3}} \right)^4}\)
Phương pháp giải - Xem chi tiết
Sử dụng khai triển Nhị thức Newton với \(n = 4\): \({\left( {a + b} \right)^4} = {a^4} + 4{a^3}b +6{a^2}{b^2} + 4a{b^3} + {b^4}\)
Lời giải chi tiết
a) \({\left( {2x + 1} \right)^4} = {\left( {2x} \right)^4} + 4.{\left( {2x} \right)^3}{.1^1} + 6.{\left( {2x} \right)^2}{.1^2} + 4.\left( {2x} \right){.1^3} + {1^4} = 16{x^4} + 32{x^3} + 24{x^2} + 8x + 1\)
b) \(\begin{array}{l}{\left( {3y - 4} \right)^4} = {\left[ {3y + \left( { - 4} \right)} \right]^4} = {\left( {3y} \right)^4} + 4.{\left( {3y} \right)^3}.\left( { - 4} \right) + 6.{\left( {3y} \right)^2}.{\left( { - 4} \right)^2} + 4.{\left( {3y} \right)^1}{\left( { - 4} \right)^3} + {\left( { - 4} \right)^4}\\ = 81{y^4} - 432{y^3} + 864{y^2} - 768y + 256\end{array}\)
c) \({\left( {x + \frac{1}{2}} \right)^4} = {x^4} + 4.{x^3}.{\left( {\frac{1}{2}} \right)^1} + 6.{x^2}.{\left( {\frac{1}{2}} \right)^2} + 4.x.{\left( {\frac{1}{2}} \right)^3} + {\left( {\frac{1}{2}} \right)^4} = {x^4} + 2{x^3} + \frac{3}{2}{x^2} + \frac{1}{2}x + \frac{1}{{16}}\)
d) \(\begin{array}{l}{\left( {x - \frac{1}{3}} \right)^4} = {\left[ {x + \left( { - \frac{1}{3}} \right)} \right]^4} = {x^4} + 4.{x^3}.{\left( { - \frac{1}{3}} \right)^1} + 6.{x^2}.{\left( { - \frac{1}{3}} \right)^2} + 4.x.{\left( { - \frac{1}{3}} \right)^3} + {\left( { - \frac{1}{3}} \right)^4}\\ = {x^4} - \frac{4}{3}{x^3} + \frac{2}{3}{x^2} - \frac{4}{9}x + \frac{1}{{81}}\end{array}\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 1 trang 19 SGK Toán 10 tập 2 – Cánh diều timdapan.com"