Câu 9 trang 135 SGK Đại số và Giải tích 11 Nâng cao

Biểu diễn các số thập phân


Biểu diễn các số thập phân vô hạn tuần hoàn sau dưới dạng phân số :

LG a

 \(0,444…\)

Giải chi tiết:

 Ta có:

\(\eqalign{
& 0,444... = 0,4 + 0,04 + 0,004 + ... \cr 
& = {4 \over {10}} + {4 \over {{{10}^2}}} + {4 \over {{{10}^3}}} + ... \cr 
& = 4\left( {{1 \over {10}} + {1 \over {{{10}^2}}} + ...} \right) \cr 
& = 4.{{{1 \over {10}}} \over {1 - {1 \over {10}}}} = {4 \over 9} \cr} \)


LG b

\(0,2121…\)

Giải chi tiết:

\(\eqalign{
& 0,2121... = 0,21 + 0,0021 + ... \cr 
& = {{21} \over {{{10}^2}}} + {{21} \over {{{10}^4}}} + ... = 21\left( {{1 \over {{{10}^2}}} + {1 \over {{{10}^4}}} + ...} \right) \cr 
& = 21.{{{1 \over {{{10}^2}}}} \over {1 - {1 \over {{{10}^2}}}}} = {{21} \over {99}} = {7 \over {33}} \cr} \) .


LG c

\(0,32111…\)

Giải chi tiết:

\(\eqalign{
& 0,32111... = {{32} \over {100}} + {1 \over {1000}} + {1 \over {1000}}.\left( {{1 \over {10}}} \right) + {1 \over {1000}}.{\left( {{1 \over {10}}} \right)^2} + ... \cr 
& = {{32} \over {100}} + {1 \over {1000}}.{1 \over {1 - {1 \over {10}}}} = {{32} \over {100}} + {1 \over {900}} = {{289} \over {900}} \cr} \)