Câu 9 trang 105 SGK Đại số và Giải tích 11 Nâng cao

Tìm 5 số hạng đầu


Tìm 5 số hạng đầu của mỗi dãy số sau :

LG a

Dãy số (un) với \({u_n} = {{2{n^2} - 3} \over n}\)

Lời giải chi tiết:

Ta có

\(\eqalign{
& {u_1} = {{{{2.1}^2} - 3} \over 1} = - 1 \cr 
& {u_2} = {{{{2.2}^2} - 3} \over 2} = {5 \over 2} \cr 
& {u_3} = {{{{2.3}^2} - 3} \over 3} = 5 \cr 
& {u_4} = {{{{2.4}^2} - 3} \over 4} = {{29} \over 4} \cr 
& {u_5} = {{{{2.5}^2} - 3} \over 5} = {{47} \over 5} \cr} \)


LG b

Dãy số (un) với  \({u_n} = {\sin ^2}{{n\pi } \over 4} + \cos {{2n\pi } \over 3}\)

Lời giải chi tiết:

\(\eqalign{
& {u_1} = {\sin ^2}{\pi \over 4} + \cos {{2\pi } \over 3} \cr& = {\left( {\frac{{\sqrt 2 }}{2}} \right)^2} + \left( { - \frac{1}{2}} \right)= {1 \over 2} - {1 \over 2} = 0 \cr 
& {u_2} = {\sin ^2}{\pi \over 2} + \cos {{4\pi } \over 3} \cr&= {1^2} + \left( { - \frac{1}{2}} \right)= 1 - {1 \over 2} = {1 \over 2} \cr 
& {u_3} = {\sin ^2}{{3\pi } \over 4} + \cos 2\pi \cr& = {\left( {\frac{{\sqrt 2 }}{2}} \right)^2} + 1= {1 \over 2} + 1 = {3 \over 2} \cr 
& {u_4} = {\sin ^2}\pi + \cos {{8\pi } \over 3} \cr& = {0^2} + \cos \left( {2\pi  + \frac{{2\pi }}{3}} \right) \cr& = 0+\cos \frac{{2\pi }}{3} = - {1 \over 2} \cr 
& {u_5} = {\sin ^2}{{5\pi } \over 4} + \cos {{10\pi } \over 3} \cr& = {\sin ^2}\left( {\pi  + \frac{\pi }{4}} \right) + \cos \left( {4\pi  - \frac{{2\pi }}{3}} \right) \cr&= {\left( { - \sin \frac{\pi }{4}} \right)^2} + \cos \left( { - \frac{{2\pi }}{3}} \right) \cr&= {\left( { - \frac{{\sqrt 2 }}{2}} \right)^2} + \left( { - \frac{1}{2}} \right)= {1 \over 2} - {1 \over 2} \cr&= 0 \cr} \)


LG c

Dãy số (un) với  \({u_n} = {\left( { - 1} \right)^n}.\sqrt {{4^n}} \)

Lời giải chi tiết:

\(\begin{array}{l}
{u_1} = {\left( { - 1} \right)^1}\sqrt {{4^1}} = - 2\\
{u_2} = {\left( { - 1} \right)^2}\sqrt {{4^2}} = 4\\
{u_3} = {\left( { - 1} \right)^3}\sqrt {{4^3}} = - 8\\
{u_4} = {\left( { - 1} \right)^4}\sqrt {{4^4}} = 16\\
{u_5} = {\left( { - 1} \right)^5}\sqrt {{4^5}} = - 32
\end{array}\)



Từ khóa phổ biến