Câu 58 trang 178 SGK Đại số và Giải tích 11 Nâng cao

Tìm giới hạn của dãy số (un) xác định bởi


Đề bài

Tìm giới hạn của dãy số (un) xác định bởi

\({u_n} = {1 \over {1.2}} + {1 \over {2.3}} + ... + {1 \over {n\left( {n + 1} \right)}}.\)

Hướng dẫn : Với mỗi số nguyên dương k, ta có

\({1 \over {k\left( {k + 1} \right)}} = {1 \over k} - {1 \over {k + 1}}\)

 

Lời giải chi tiết

\({u_n} = \left( {1 - {1 \over 2}} \right) + \left( {{1 \over 2} - {1 \over 3}} \right) + ... \)

          \(+ \left( {{1 \over {n - 1}}}-{1 \over n} \right) + \left( {{1 \over n} - {1 \over {n + 1}}} \right) = 1 - {1 \over {n + 1}}\)

Do đó  \(\lim {u_n} = \lim \left( {1 - {1 \over {n + 1}}} \right) = 1\)