Câu 55 trang 177 SGK Đại số và Giải tích 11 Nâng cao

Tìm giới hạn của các dãy số (un) với


Tìm giới hạn của các dãy số (un) với

LG a

\({u_n} = {{2{n^3} - n - 3} \over {5n - 1}}\)

Giải chi tiết:

Ta có:

\(\eqalign{
& \lim {{2{n^3} - n - 3} \over {5n - 1}} = \lim {{{n^3}\left( {2 - {1 \over {{n^2}}} - {3 \over {{n^3}}}} \right)} \over {{n^3}\left( {{5 \over {{n^2}}} - {1 \over {{n^3}}}} \right)}} \cr 
& = \lim {{2 - {1 \over {{n^2}}} - {3 \over {{n^3}}}} \over {{5 \over {{n^2}}} - {1 \over {{n^3}}}}} = + \infty \cr 
& \text{ vì }\,\lim \left( {2 - {1 \over {{n^2}}} - {3 \over {{n^3}}}} \right) = 2\,\text{ và }\,\lim \left( {{5 \over {{n^2}}} - {1 \over {{n^3}}}} \right) = 0;5n - 1 > 0 \cr} \)


LG b

\({u_n} = {{\sqrt {{n^4} - 2n + 3} } \over { - 2{n^2} + 3}}\)

Giải chi tiết:

\(\eqalign{
& \lim {{\sqrt {{n^4} - 2n + 3} } \over { - 2{n^2} + 3}} = \lim {{{n^2}\sqrt {1 - {2 \over {{n^3}}} + {3 \over {{n^4}}}} } \over {{n^2}\left( { - 2 + {3 \over {{n^2}}}} \right)}} \cr 
& = \lim {{\sqrt {1 - {2 \over {{n^3}}} + {3 \over {{n^4}}}} } \over { - 2 + {3 \over {{n^2}}}}} = - {1 \over 2} \cr} \)


LG c

 \({u_n} = - 2{n^2} + 3n - 7\)

Giải chi tiết:

\(\eqalign{
& \lim \left( { - 2{n^2} + 3n - 7} \right) = \lim {n^2}\left( { - 2 + {3 \over n} - {7 \over {{n^2}}}} \right) = - \infty \cr 
& \text{vì }\,\lim {n^2} = + \infty \,\text{ và }\,\lim \left( { - 2 + {3 \over n} - {7 \over {{n^2}}}} \right) = - 2 < 0 \cr} \)


LG d

\({u_n} = \root 3 \of {{n^9} + 8{n^2} - 7} \)

Giải chi tiết:

\(\eqalign{
& \lim \root 3 \of {{n^9} + 8{n^2} - 7} = \lim {n^3}.\root 3 \of {1 + {8 \over {{n^7}}} - {7 \over {{n^9}}}} = + \infty \cr 
& \text{ vì }\,\lim {n^3} = + \infty \,\text{ và }\,\lim \root 3 \of {1 + {8 \over {{n^7}}} - {7 \over {{n^9}}}} = 1 > 0 \cr} \)