Câu 53 trang 60 Sách Bài tập Hình học 11 Nâng cao
Cho lăng trụ tam giác ABC.A’B’C’.
Đề bài
Cho lăng trụ tam giác ABC.A’B’C’. Trên đường thẳng BA lấy một điểm M sao cho A nằm giữa B và M, \(MA = {1 \over 2}AB\)
a) Xác định thiết diện của hình lăng trụ khi cắt bởi mặt phẳng (P) qua M, B’ và trung điểm E của AC.
b) Tính tỉ số \({{BD} \over {CD}}\left( {D = BC \cap mp\left( {MB'E} \right)} \right)\).
Lời giải chi tiết
a) Trong mp(ABB’A’) nối M với B’ cắt AA’ tại K.
Trong mp(ABC) nối M với E cắt CB tại D.
Thiết diện là tứ giác DEKB’.
b) Kẻ EF // AB \(\left( {F \in CB} \right)\). Khi đó EF là đường trung bình của tam giác ABC và \({\rm{EF}} = {{AB} \over 2}\).
Xét tam giác DBM ta có:
\({{FD} \over {BD}} = {{EF} \over {BM}} = {1 \over 3}\)
Suy ra FD = \({1 \over 2}\)BF = FC, tức D là trung điểm FC.
Vậy \({{BD} \over {CD}} = 3\).
Mẹo Tìm đáp án nhanh nhất
Search google: "từ khóa + timdapan.com" Ví dụ: "Câu 53 trang 60 Sách Bài tập Hình học 11 Nâng cao timdapan.com"
Search google: "từ khóa + timdapan.com" Ví dụ: "Câu 53 trang 60 Sách Bài tập Hình học 11 Nâng cao timdapan.com"