Câu 41 trang 216 SGK Đại số và Giải tích 11 Nâng cao

Áp dụng công thức (2), tìm giá trị gần đúng


Áp dụng công thức (2), tìm giá trị gần đúng của các số sau (làm tròn kết quả đến hàng phần nghìn).

LG a

\({1 \over {0,9995}}\)

Giải chi tiết:

Xét hàm số \(f\left( x \right) = {1 \over x},\,\text{ ta có }\,f'\left( x \right) = {{ - 1} \over {{x^2}}}\)

Đặt \({x_0} = 1,\Delta x =  - 0,0005\) và áp dụng công thức gần đúng

\(f\left( {{x_0} + \Delta x} \right) \approx f\left( {{x_0}} \right) + f'\left( {{x_0}} \right)\Delta x\)

Ta được : \({1 \over {{x_0} + \Delta x}} \approx {1 \over {{x_0}}} - {1 \over {x_0^2}}.\Delta x,\)

Hay : \({1 \over {0,9995}} \approx 1 + 0,0005 = 1,0005\)


LG b

 \(\sqrt {0,996} \)

Giải chi tiết:

 Xét

\(\eqalign{  & f\left( x \right) = \sqrt x \,\text{ ta có }\,f'\left( x \right) = {1 \over {2\sqrt x }}  \cr  & {x_0} = 1,\Delta x =  - 0,004  \cr  & f\left( {{x_0} + \Delta x} \right) \approx f\left( {{x_0}} \right) + f'\left( {{x_0}} \right)\Delta x  \cr  &  \Leftrightarrow \sqrt {0,996}  \approx 1 - {1 \over 2}.0,004 = 0,998 \cr} \)


LG c

Giải chi tiết:

Xét hàm số \(f(x) = \cos x\), ta có: \(f'\left( x \right) =  - \sin x.\)

Đặt \({x_0} = {\pi  \over 4},\Delta x = {\pi  \over {360}}\)

(Vì \({\pi  \over {360}} = 30'\) ) và áp dụng công thức gần đúng trên, ta được :

  \(\eqalign{  & \cos \left( {{\pi  \over 4} + {\pi  \over {360}}} \right) \approx \cos {\pi  \over 4} - \sin \left( {{\pi  \over 4}} \right).{\pi  \over {360}}  \cr  & \text{Vậy }\,\cos 45^\circ 30' \approx {{\sqrt 2 } \over 2} - {{\sqrt 2 } \over 2}.{\pi  \over {360}} \approx 0,7009 \cr} \)

Bài giải tiếp theo