Câu 3 trang 192 SGK Đại số và Giải tích 11 Nâng cao
Dùng định nghĩa, tính đạo hàm của mỗi hàm số sau tại điểm x0 (a là hằng số).
Dùng định nghĩa, tính đạo hàm của mỗi hàm số sau tại điểm x0 (a là hằng số).
LG a
\(y = ax + 3\)
Giải chi tiết:
\(f(x) = ax + 3\), cho x0 một số gia Δx, ta có:
\(\eqalign{ & \Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right) \cr & = a\left( {{x_0} + \Delta x} \right) + 3 - \left( {a{x_0} + 3} \right) = a\Delta x \cr & \Rightarrow {{\Delta y} \over {\Delta x}} = a \Rightarrow f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} {{\Delta y} \over {\Delta x}} = a \cr} \)
LG b
\(y = {1 \over 2}a{x^2}\)
Giải chi tiết:
\(\eqalign{ & f\left( x \right) = {1 \over 2}a{x^2},\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right) \cr & = {1 \over 2}a{\left( {{x_0} + \Delta x} \right)^2} - {1 \over 2}ax_0^2 \cr & = {1 \over 2}a\Delta x\left( {2{x_0} + \Delta x} \right) \cr & \Rightarrow f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{\Delta x \to 0} {{\Delta y} \over {\Delta x}} \cr & = \mathop {\lim }\limits_{\Delta x \to 0} {1 \over 2}a\left( {2{x_0} + \Delta x} \right) = a{x_0} \cr} \)
Search google: "từ khóa + timdapan.com" Ví dụ: "Câu 3 trang 192 SGK Đại số và Giải tích 11 Nâng cao timdapan.com"