Câu 3 trang 100 SGK Đại số và Giải tích 11 Nâng cao
Chứng minh rằng
Đề bài
Chứng minh rằng với mọi số nguyên dương \(n\), ta luôn có bất đẳng thức sau :
\(1 + {1 \over {\sqrt 2 }} + ... + {1 \over {\sqrt n }} < 2\sqrt n \)
Lời giải chi tiết
+) Với \(n = 1\) ta có \(1 < 2\sqrt 1 \) .
Vậy (1) đúng với \(n = 1\)
+) Giả sử (1) đúng với \(n = k\), tức là ta có :
\(1 + {1 \over {\sqrt 2 }} + ... + {1 \over {\sqrt k }} < 2\sqrt k \)
+) Ta chứng minh (1) đúng với \(n = k + 1\), tức là phải chứng minh :
\(1 + {1 \over {\sqrt 2 }} + ... + {1 \over {\sqrt k }} + {1 \over {\sqrt {k + 1} }} < 2\sqrt {k + 1} \left( * \right)\)
Theo giả thiết qui nạp ta có :
\(1 + {1 \over {\sqrt 2 }} + ... + {1 \over {\sqrt k }} + {1 \over {\sqrt {k + 1} }} < 2\sqrt k + {1 \over {\sqrt {k + 1} }}\)
Để chứng minh (*) ta cần chứng minh
\(2\sqrt k + {1 \over {\sqrt {k + 1} }} < 2\sqrt {k + 1} \)
Thật vậy ta có :
\(\eqalign{
& 2\sqrt k + {1 \over {\sqrt {k + 1} }} < 2\sqrt {k + 1} \cr
& \Leftrightarrow 2\sqrt {k\left( {k + 1} \right)} + 1 < 2\left( {k + 1} \right) \cr
& \Leftrightarrow 2\sqrt {k\left( {k + 1} \right)} < 2k + 1 \cr
& \Leftrightarrow 4k\left( {k + 1} \right) < {\left( {2k + 1} \right)^2} \cr} \)
\( \Leftrightarrow 4{k^2} + 4k < 4{k^2} + 4k + 1\)
\(⇔ 0 < 1\) (luôn đúng)
Vậy ta có (*) luôn đúng tức (1) đúng với \(n = k + 1\), do đó (1) đúng với mọi \(n \in \mathbb N^*\).
Search google: "từ khóa + timdapan.com" Ví dụ: "Câu 3 trang 100 SGK Đại số và Giải tích 11 Nâng cao timdapan.com"