Câu 26 trang 115 SGK Đại số và Giải tích 11 Nâng cao
Hãy chứng minh định lí 3.
Đề bài
Hãy chứng minh định lí 3.
Lời giải chi tiết
Ta sẽ chứng minh \({S_n} = {{n\left( {{u_1} + {u_n}} \right)} \over 2}\) (1)
+) Với mọi \(n \in \mathbb N^*\), bằng phương pháp qui nạp.
+) Với \(n = 1\), ta có \({S_1} = {u_1} = {{1\left( {{u_1} + {u_1}} \right)} \over 2}.\) Như vậy (1) đúng với \(n = 1\).
+) Giả sử (1) đúng khi \(n = k, k \in \mathbb N^*\), tức là:
\({S_k} = {{k\left( {{u_1} + {u_k}} \right)} \over 2}\)
+) Ta chứng minh (1) đúng với \(n=k+1\)
\(\eqalign{
& {S_{k + 1}} = {S_k} + {u_{k + 1}} \cr
& = {{k\left( {{u_1} + {u_k}} \right)} \over 2} + {u_{k + 1}} \cr
& = {{k\left( {{u_1} + {u_{k + 1}} - d} \right) + 2{u_{k + 1}}} \over 2} \cr
& = {{k{u_1} + \left( {k + 1} \right){u_{k + 1}} + {u_{k + 1}} - kd} \over 2} \cr
& = {{k{u_1} + \left( {k + 1} \right){u_{k + 1}} + {u_1}} \over 2} \cr
& = {{\left( {k + 1} \right)\left( {{u_1} + {u_{k + 1}}} \right)} \over 2} \cr} \)
Vậy (1) đúng với \(n = k + 1\)
Vậy (1) đúng với mọi \(n \in \mathbb N^*\).
Cách khác :
Ta có:
\(\eqalign{& \left\{ {\matrix{{{S_n} = {u_1} + {u_2} + ... + {u_{n - 1}} + {u_n}} \cr {{S_n} = {u_n} + {u_{n - 1}} + ... + {u_2} + {u_1}} \cr} } \right. \cr & \Rightarrow 2{S_n} = \left( {{u_1} + {u_n}} \right) + \left( {{u_2} + {u_{n - 1}}} \right) + ... + \left( {{u_{n - 1}} + {u_2}} \right) + \left( {{u_n} + {u_1}}\right) \cr} \)
Mà \({u_2} + {u_{n - 1}} = {u_3} + {u_{n - 2}} = ... = {u_n} + {u_1}\)
Do đó \(2{S_n} = n\left( {{u_1} + {u_n}} \right) \Rightarrow {S_n} = {n \over 2}\left( {{u_1} + {u_n}} \right)\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Câu 26 trang 115 SGK Đại số và Giải tích 11 Nâng cao timdapan.com"