Câu 19 trang 114 SGK Đại số và Giải tích 11 Nâng cao
Chứng minh rằng
Chứng minh rằng mỗi dãy số sau là một cấp số cộng và hãy xác định công sai của cấp số cộng đó:
LG a
Dãy số (un) với \(u_n= 19n – 5 \);
Lời giải chi tiết:
Ta có:
\({u_{n + 1}} - {u_n} = 19\left( {n + 1} \right) - 5 - \left( {19n - 5} \right) = 19\) với mọi \(n ≥ 1\).
Do đó \((u_n)\) là một cấp số cộng với công sai \(d = 19\).
LG b
Dãy số (un) với \(u_n= an + b\), trong đó a và b là các hằng số.
Lời giải chi tiết:
Ta có:
\({u_{n + 1}} - {u_n} = a\left( {n + 1} \right) + b - \left( {an + b} \right) = a\) với mọi \(n ≥ 1\).
Do đó \((u_n)\) là một cấp số cộng với công sai \(d = a\).
Mẹo Tìm đáp án nhanh nhất
Search google: "từ khóa + timdapan.com" Ví dụ: "Câu 19 trang 114 SGK Đại số và Giải tích 11 Nâng cao timdapan.com"
Search google: "từ khóa + timdapan.com" Ví dụ: "Câu 19 trang 114 SGK Đại số và Giải tích 11 Nâng cao timdapan.com"