Câu 15 trang 142 SGK Đại số và Giải tích 11 Nâng cao
Tìm giới hạn của các dãy số (un) với
Tìm giới hạn của các dãy số (un) với
LG a
\({u_n} = {{{3^n} + 1} \over {{2^n} - 1}}\)
Giải chi tiết:
Chia cả tử và mẫu cho 3n ta được : \({u_n} = {{1 + {{\left( {{1 \over 3}} \right)}^n}} \over {{{\left( {{2 \over 3}} \right)}^n} - {{\left( {{1 \over 3}} \right)}^n}}}\)
\(\eqalign{
& \lim \left[ {1 + {{\left( {{1 \over 3}} \right)}^n}} \right] = 1 > 0\text{ và }\lim \left[ {{{\left( {{2 \over 3}} \right)}^n} - {{\left( {{1 \over 3}} \right)}^n}} \right] = 0\,; \cr
& \text{ nên }\,\lim {u_n} = + \infty \cr} \)
LG b
\({u_n} = {2^n} - {3^n}\)
Giải chi tiết:
\(\eqalign{
& {u_n} = {3^n}\left[ {{{\left( {{2 \over 3}} \right)}^n} - 1} \right] \cr
& \lim {3^n} = + \infty \text{ và }\lim \left[ {{{\left( {{2 \over 3}} \right)}^n} - 1} \right] = - 1 < 0 \cr
&\text{ nên }{{\mathop{\rm lim}\nolimits}\,u _n} = - \infty \cr} \)
Search google: "từ khóa + timdapan.com" Ví dụ: "Câu 15 trang 142 SGK Đại số và Giải tích 11 Nâng cao timdapan.com"