Câu 15 trang 142 SGK Đại số và Giải tích 11 Nâng cao

Tìm giới hạn của các dãy số (un) với


Tìm giới hạn của các dãy số (un) với

LG a

\({u_n} = {{{3^n} + 1} \over {{2^n} - 1}}\)

Giải chi tiết:

Chia cả tử và mẫu cho 3ta được :  \({u_n} = {{1 + {{\left( {{1 \over 3}} \right)}^n}} \over {{{\left( {{2 \over 3}} \right)}^n} - {{\left( {{1 \over 3}} \right)}^n}}}\)

\(\eqalign{
& \lim \left[ {1 + {{\left( {{1 \over 3}} \right)}^n}} \right] = 1 > 0\text{ và }\lim \left[ {{{\left( {{2 \over 3}} \right)}^n} - {{\left( {{1 \over 3}} \right)}^n}} \right] = 0\,; \cr 
& \text{ nên }\,\lim {u_n} = + \infty \cr} \)


LG b

 \({u_n} = {2^n} - {3^n}\)

Giải chi tiết:

\(\eqalign{
& {u_n} = {3^n}\left[ {{{\left( {{2 \over 3}} \right)}^n} - 1} \right] \cr 
& \lim {3^n} = + \infty \text{ và }\lim \left[ {{{\left( {{2 \over 3}} \right)}^n} - 1} \right] = - 1 < 0 \cr 
&\text{ nên }{{\mathop{\rm lim}\nolimits}\,u _n} = - \infty \cr} \)