Câu 11 trang 142 SGK Đại số và Giải tích 11 Nâng cao
Tìm giới hạn của các dãy số (un) với
Tìm giới hạn của các dãy số (un) với
LG a
\({u_n} = - 2{n^3} + 3n + 5\)
Giải chi tiết:
Ta có: \({u_n} = {n^3}\left( { - 2 + {3 \over {{n^2}}} + {5 \over {{n^3}}}} \right)\)
Vì \({{\mathop{\rm limn}\nolimits} ^3} = + \infty \,\text{ và }\,\lim \left( { - 2 + {3 \over {{n^2}}} + {5 \over {{n^3}}}} \right) = - 2 < 0\)
Nên \(\lim {u_n} = - \infty \)
LG b
\({u_n} = \sqrt {3{n^4} + 5{n^3} - 7n} \)
Giải chi tiết:
Ta có: \({u_n} = {n^2}\sqrt {3 + {5 \over n} - {7 \over {{n^3}}}} \)
Vì \(\lim {n^2} = + \infty \,\text{ và }\,\lim \sqrt {3 + {5 \over n} - {7 \over {{n^3}}}} = \sqrt 3 > 0\)
Nên \(\lim {u_n} = + \infty \)
Mẹo Tìm đáp án nhanh nhất
Search google: "từ khóa + timdapan.com" Ví dụ: "Câu 11 trang 142 SGK Đại số và Giải tích 11 Nâng cao timdapan.com"
Search google: "từ khóa + timdapan.com" Ví dụ: "Câu 11 trang 142 SGK Đại số và Giải tích 11 Nâng cao timdapan.com"