Bài 7 trang 12 Vở bài tập toán 9 tập 2
Giải Bài 7 trang 12 VBT toán 9 tập 2. Đoán nhận số nghiệm của mỗi hệ phương trình sau, giải thích vì sao...
Đoán nhận số nghiệm của mỗi hệ phương trình sau, giải thích vì sao:
LG a
\(\left\{ \begin{array}{l}x + y = 2\\3x + 3y = 2\end{array} \right.\)
Phương pháp giải:
Xét hệ phương trình \(\left\{ \begin{array}{l}ax + by = c\,\,\,\,\,\,\,\,\,\,(1)\\a'x + b'y = c'\,\,\,(2)\end{array} \right.\) có \(d\) là đường thẳng biểu diễn tập nghiệm của phương trình \(\left( 1 \right)\) và \(d'\) là đường thẳng biểu diễn tập nghiệm của phương trình \(\left( 2 \right)\), khi đó
Trường hợp 1. \(d \cap d' = A\left( {{x_0};{y_0}} \right) \Leftrightarrow \) Hệ phương trình có nghiệm duy nhất \(\left( {{x_0};{y_0}} \right)\);
Trường hợp 2. \(d//d' \Leftrightarrow \) Hệ phương trình vô nghiệm;
Trường hợp 3. \(d \equiv d' \Leftrightarrow \) Hệ phương trình có vô số nghiệm.
Lời giải chi tiết:
Tập nghiệm của phương trình \(x + y = 2\) được biểu diễn bởi đường thẳng \(y = - x + 2\) có hệ số góc bằng \( - 1\), tung độ gốc bằng \(2.\)
Tập nghiệm của phương trình \(3x + 3y = 2\) được biểu diễn bởi đường thẳng \(y = - x + \dfrac{2}{3}\) có hệ số góc bằng \( - 1\), tung độ gốc bằng \(\dfrac{2}{3}.\)
Hai đường thẳng này có hệ số góc bằng nhau nhưng tung độ gốc khác nhau nên chúng song song với nhau.
Vậy hệ phương trình đã cho vô nghiệm.
LG b
\(\left\{ \begin{array}{l}3x - 2y = 1\\ - 6x + 4y = 0\end{array} \right.\)
Phương pháp giải:
Xét hệ phương trình \(\left\{ \begin{array}{l}ax + by = c\,\,\,\,\,\,\,\,\,\,(1)\\a'x + b'y = c'\,\,\,(2)\end{array} \right.\) có \(d\) là đường thẳng biểu diễn tập nghiệm của phương trình \(\left( 1 \right)\) và \(d'\) là đường thẳng biểu diễn tập nghiệm của phương trình \(\left( 2 \right)\), khi đó
Trường hợp 1. \(d \cap d' = A\left( {{x_0};{y_0}} \right) \Leftrightarrow \) Hệ phương trình có nghiệm duy nhất \(\left( {{x_0};{y_0}} \right)\);
Trường hợp 2. \(d//d' \Leftrightarrow \) Hệ phương trình vô nghiệm;
Trường hợp 3. \(d \equiv d' \Leftrightarrow \) Hệ phương trình có vô số nghiệm.
Lời giải chi tiết:
Tập nghiệm của phương trình \(3x - 2y = 1\) được biểu diễn bởi đường thẳng \(y = \dfrac{3}{2}x - \dfrac{1}{2}\) có hệ số góc bằng \(\dfrac{3}{2}\), tung độ gốc bằng \( - \dfrac{1}{2}.\)
Tập nghiệm của phương trình \( - 6x + 4y = 0\) được biểu diễn bởi đường thẳng \(y = \dfrac{3}{2}x\) có hệ số góc bằng \(\dfrac{3}{2}\), tung độ gốc bằng \(0.\)
Hai đường thẳng này có hệ số góc bằng nhau nhưng tung độ gốc khác nhau nên chúng song song với nhau.
Vậy hệ phương trình đã cho vô nghiệm.
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 7 trang 12 Vở bài tập toán 9 tập 2 timdapan.com"