Bài 57 trang 92 SGK Toán 8 tập 2
Giải bài 57 trang 92 SGK Toán 8 tập 2. Cho tam giác ABC (AB < AC). Vẽ đường cao AH, đường phân giác AD, đường trung tuyến AM. Có nhận xét gì về vị trí của ba điểm H, D, M.
Đề bài
Cho tam giác \(ABC (AB < AC)\). Vẽ đường cao \(AH\), đường phân giác \(AD\), đường trung tuyến \(AM\). Có nhận xét gì về vị trí của ba điểm \(H, D, M\).
Phương pháp giải - Xem chi tiết
Áp dụng: Tính chất đường phân giác của tam giác, quan hệ giữa cạnh và góc trong tam giác.
Lời giải chi tiết
+ Nhận xét: \(D\) luôn nằm giữa \(H\) và \(M\).
+ Chứng minh:
\(AD\) là đường phân giác của \(∆ABC\).
\(\Rightarrow \dfrac{{AB}}{{AC}} = \dfrac{{DB}}{{DC}}\) (tính chất đường phân giác của tam giác)
Mà \(AB < AC\) (giả thiết)
\( \Rightarrow DB < DC\) \( \Rightarrow DB + DC < DC + DC\)
\( \Rightarrow BD + DC < 2DC\) hay \(BC < 2DC\)
\( \Rightarrow DC >\dfrac{{BC}}{2}\)
Mà \(MC = \dfrac{{BC}}{2}\) (\(M\) là trung điểm của \(BC\))
\( \Rightarrow DC > MC\) \( \Rightarrow M \) nằm giữa \(D\) và \(C\) (1)
+ Mặt khác: \(\widehat {CAH} = {90^0} - \hat C\) (\(∆CAH\) vuông tại \(H\))
\(\hat A + \hat B + \hat C = {180^0}\) (tổng 3 góc ∆ABC)
\( \Rightarrow \widehat {CAH} = \dfrac{{\widehat A + \widehat B + \widehat C}}{2} - \widehat C\)
\( \Rightarrow \widehat {CAH} = \dfrac{{\widehat A}}{2} + \dfrac{{\widehat B}}{2} - \dfrac{{\widehat C}}{2}\)\(\, = \dfrac{{\widehat A}}{2} + \dfrac{{\widehat B - \widehat C}}{2}\)
Vì \(AB < AC\) \( \Rightarrow \widehat C < \widehat B \Rightarrow \widehat B - \widehat C > 0\)
Do đó: \(\widehat {CAH} > \dfrac{{\widehat A}}{2}\) hay \(\widehat {CAH} > \widehat {CAD}\)
\( \Rightarrow \) Tia \(AD\) nằm giữa hai tia \(AH\) và \(AC\)
Do đó \(D\) nằm giữa hai điểm \(H\) và \(C\) (2)
Từ (1) và (2) suy ra \(D\) nằm giữa \(H\) và \(M.\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 57 trang 92 SGK Toán 8 tập 2 timdapan.com"