Bài 57 trang 129 SGK Toán 8 tập 2
Giải bài 57 trang 129 SGK Toán 8 tập 2. Tính thể tích của hình chóp đều, hình chóp cụt đều sau đây (h.147 và h.148),
Đề bài
Tính thể tích của hình chóp đều, hình chóp cụt đều sau đây (h.147 và h.148)
Hướng dẫn: Hình chóp \(L.EFGH\) cũng là hình chóp đều
Phương pháp giải - Xem chi tiết
Áp dụng công thức tính thể tích của hình chóp đều.
\(V = \dfrac{1}{3}Sh\)
Trong đó: \(S\) là diện tích đáy hình chóp.
\(h\) là chiều cao hình chóp.
Lời giải chi tiết
a) Hình 147
Chiều cao của tam giác đều BCD cạnh 10 cm là:
\(DH =\sqrt{AC^2-\left(\dfrac{BC}{2}\right)^2}=\sqrt{10^2-5^2}\)\(= 5\sqrt 3 \approx 8,65\) \(\left( {cm} \right)\)
Diện tích đáy của hình chóp là:
\(S = \dfrac{1}{2}.BC.DH = \dfrac{1}{2}.10.8,65 \)\(\,= 43,25\left( {c{m^2}} \right)\)
Thể tích hình chóp đều:
\(V = \dfrac{1}{3}.S.h = \dfrac{1}{3}.43,25.20 = 288,33\) \((c{m^3})\)
b) Hình 148
Thể tích của hình chóp cụt đều chính là hiệu của thể tích hình chóp đều \(L.ABCD\) với thể tích của hình chóp đều \(L.EFGH\). Do có: \(LO = LM + MO = 15 + 15 \)\(\,= 30\, (cm)\)
+ Tính thể tích hình chóp đều \(L.ABCD\):
- Diện tích đáy: \(S_1 = AB^2= 20^2= 400 (cm^2)\)
- Thể tích hình chóp đều \(L.ABCD\) là:
\({V_1} = \dfrac{1}{3}{S_1}{h_1} = \dfrac{1}{3}.400.30 \)\(\,= 4000\left( {c{m^3}} \right)\)
+Thể tích hình chóp đều \(L.EFGH\):
-Diện tích đáy: \(S_2 = E{F^2} = {10^2} = 100(c{m^2})\)
-Thể tích hình chóp đều \(L.EFGH\) là:
\({V_2} = \dfrac{1}{3}{S_2}{h_2} = \dfrac{1}{3}.100.15 = 500\left( {c{m^3}} \right)\)
Vậy thể tích hình chóp cụt đều là:
\(V = {V_1} - {V_2} = 4000 - 500 \)\(\,= 3500(c{m^3})\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 57 trang 129 SGK Toán 8 tập 2 timdapan.com"