Bài 5 trang 122 SGK Hình học 12 Nâng cao

Cho hình vuông ABCD nội tiếp đường tròn (O; R). Gọi H là hình gồm các điểm của hình tròn (O; R) nhưng không nằm trong hình vuông. Tính thể tích hình tròn xoay sinh bởi hình H khi quay quanh đường thẳng chứa một đường chéo của hình vuông.


Đề bài

Cho hình vuông ABCD nội tiếp đường tròn (O; R). Gọi là hình gồm các điểm của hình tròn (O; R) nhưng không nằm trong hình vuông. Tính thể tích hình tròn xoay sinh bởi hình khi quay quanh đường thẳng chứa một đường chéo của hình vuông.

Lời giải chi tiết

Khi quay quanh đường chéo AC thì:

+ hình tròn (O, R) sinh ra khối cầu (S) có thể tích \({V_{\left( S \right)}} = \frac{4}{3}\pi {R^3}\)

+ đoạn thẳng BD sinh ra hình tròn (C)

+ hình vuông ABCD sinh ra hình tròn xoay K gồm hai hình nón có chung đáy là (C) với đỉnh là A và C có thể tích \({V_{\left( K \right)}} = 2.\frac{1}{3}\pi {R^2}.R = \frac{2}{3}\pi {R^3}\)

Do đó H sinh ra khối tròn xoay gồm những điểm thuộc hình cầu (S) nhưng không thuộc K và thể tích V của khối đó là:

\(V = {V_{\left( S \right)}} - {V_{\left( K \right)}} \) \(= {4 \over 3}\pi {R^3} - \frac{2}{3}\pi {R^3} = {2 \over 3}\pi {R^3}.\)



Từ khóa phổ biến