Bài 26 trang 28 Vở bài tập toán 9 tập 2
Giải Bài 26 trang 28 VBT toán 9 tập 2. Hai người thợ cùng làm một công việc trong 16 giờ thì xong. Nếu người thứ nhất làm 3 giờ và người thứ hai làm 6 giờ ...
Đề bài
Hai người thợ cùng làm một công việc trong 16 giờ thì xong. Nếu người thứ nhất làm 3 giờ và người thứ hai làm 6 giờ thì chỉ hoàn thành được 25% công việc. Hỏi nếu làm riêng thì mỗi người hoàn thành công việc đó trong bao lâu ?
Phương pháp giải - Xem chi tiết
Sử dụng cách giải bài toán bằng cách lập hệ phương trình.
Một số lưu ý khi giải bài toán làm chung công việc
- Có ba đại lượng tham gia là: Toàn bộ công việc , phần công việc làm được trong một đơn vị thời gian (năng suất) và thời gian.
- Nếu một đội làm xong công việc trong \(x\) ngày thì một ngày đội dó làm được \(\dfrac{1}{x}\) công việc.
- Xem toàn bộ công việc là \(1\) (công việc).
Lời giải chi tiết
Bước 1: Giả sử nếu làm riêng thì người thứ nhất hoàn thành công việc trong \(x\) (giờ); người thứ hai trong \(y\) (giờ) (điều kiện là: \(x;y > 16\))
Khi đó, trong 1 giờ người thứ nhất làm được \(\dfrac{1}{x}\) công việc; người thứ hai làm được \(\dfrac{1}{y}\) công việc nên cả hai người làm được \(\dfrac{1}{x} + \dfrac{1}{y}\) công việc.
Hai người cùng làm trong 16 giờ thì xong nên ta có phương trình \(\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{{16}}\)
Người thứ nhất làm trong 3 giờ và người thứ hai làm trong 6 giờ thì chỉ hoàn thành được \(25\% = \dfrac{1}{4}\) công việc. Điều đó dẫn đến phương trình \(3.\dfrac{1}{x} + 6.\dfrac{1}{y} = \dfrac{1}{4}\)
Ta có hệ phương trình \(\left\{ \begin{array}{l}\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{{16}}\\3.\dfrac{1}{x} + 6.\dfrac{1}{y} = \dfrac{1}{4}\end{array} \right.\)
Bước 2: Đặt \(\dfrac{1}{x} = u;\dfrac{1}{y} = v\,\), ta được hệ phương trình bậc nhất hai ẩn \(u\) và \(v\).
\(\left\{ \begin{array}{l}u + v = \dfrac{1}{{16}}\\3u + 6v = \dfrac{1}{4}\end{array} \right.\)
Ta giải hệ phương trình này bằng phương pháp cộng đại số:
\(\left\{ \begin{array}{l}u + v = \dfrac{1}{{16}}\\3u + 6v = \dfrac{1}{4}\end{array} \right. \)\(\Leftrightarrow \left\{ \begin{array}{l}3u + 3v = \dfrac{3}{{16}}\\3u + 6v = \dfrac{1}{4}\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}u + v = \dfrac{1}{{16}}\\3v = \dfrac{1}{{16}}\end{array} \right. \)\(\Leftrightarrow \left\{ \begin{array}{l}v = \dfrac{1}{{48}}\\u = \dfrac{1}{{24}}\end{array} \right.\,\left( {TM} \right)\)
Trở về phương trình đầu, ta được \(x = \dfrac{1}{u} = 24\left( {tm} \right)\) và \(y = \dfrac{1}{v} = 48\left( {tm} \right)\)
Bước 3: Vậy người thứ nhất làm riêng trong \(24\) giờ thì xong công việc, người thứ hai làm riêng trong \(48\) giờ thì xong công việc.
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 26 trang 28 Vở bài tập toán 9 tập 2 timdapan.com"