Bài 2 trang 63 SGK Hình học 12 Nâng cao
Xác định tâm và bán kính của mặt cầu ngoại tiếp hình chóp S.ABC
Đề bài
Xác định tâm và bán kính của mặt cầu ngoại tiếp hình chóp \(S.ABC\), biết \(SA = SB = SC = a\), \(\widehat {ASB} = {60^0},\widehat {BSC} = {90^0},\widehat {CSA} = {120^0}\).
Lời giải chi tiết
Áp dụng định lí Cosin trong tam giác \(SAB, SAC\) ta có:
\(\eqalign{
& A{B^2} = S{A^2} + S{B^2} - 2SA.SB.\cos {60^0} \cr
& = {a^2} + {a^2} - 2{a^2}.{1 \over 2} = {a^2} \Rightarrow AB = a \cr
& A{C^2} = S{A^2} + S{C^2} - 2SA.SC.\cos {120^0} \cr
& = {a^2} + {a^2} - 2{a^2}\left( { - {1 \over 2}} \right) = 3{a^2} \Rightarrow AC = a\sqrt 3 \cr} \)
Trong tam giác vuông \(SBC\) có: \(B{C^2} = S{B^2} + S{C^2} = 2{a^2} \Rightarrow BC = a\sqrt 2 \)
Ta có: \(A{C^2} = A{B^2} + B{C^2} \Rightarrow \Delta ABC\) vuông tại \(B\).
Gọi \(H\) là trung điểm của \(AC\) thì \(H\) là tâm đường tròn ngoại tiếp tam giác ABC.
Vì \(SA = SB = SC\) nên \(SH \bot mp\left( {ABC} \right)\)
Và \(S{H^2} = S{C^2} - H{C^2} = {a^2} - {\left( {{{a\sqrt 3 } \over 2}} \right)^2} = {{{a^2}} \over 4} \Rightarrow SH = {a \over 2}\)
Gọi \(O\) là điểm đối xứng của \(S\) qua \(H\) thì \(SO = OA = OB = OC = a\) nên mặt cầu ngoại tiếp hình chóp \(S.ABC\) có tâm \(O\) và bán kính \(R = a\).
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 2 trang 63 SGK Hình học 12 Nâng cao timdapan.com"