Bài 18 trang 90 SGK Hình học 12 Nâng cao
Cho hai mặt phẳng có phương trình là và Với giá trị nào của m thì: a) Hai mặt phẳng đó song song ; b) Hai mặt phẳng đó trùng nhau ; c) Hai mặt phẳng đó cắt nhau ; d) Hai mặt phẳng đó vuông góc?
Cho hai mặt phẳng có phương trình là
\(2x - my + 3z - 6 + m = 0\) và \(\left( {m + 3} \right)x - 2y + \left( {5m + 1} \right)z - 10 = 0\)
Với giá trị nào của m thì:
LG a
Hai mặt phẳng đó song song ;
Giải chi tiết:
Mặt phẳng \(2x - my + 3z - 6 + m = 0\) có vectơ pháp tuyến \(\overrightarrow {{n_1}} = \left( {2; - m;3} \right)\).
Mặt phẳng \(\left( {m + 3} \right)x - 2y + \left( {5m + 1} \right)z - 10 = 0\) có vectơ pháp tuyến \(\overrightarrow {{n_2}} = \left( {m + 3; - 2;5m + 1} \right)\).
Ta có
\(\left[ {\overrightarrow {{n_1}} ;\overrightarrow {{n_2}} } \right] = \overrightarrow 0 \Leftrightarrow \left\{ \matrix{
- 5{m^2} - m + 6 = 0 \hfill \cr
- 7m + 7 = 0 \hfill \cr
{m^2} + 3m - 4 = 0 \hfill \cr} \right. \Leftrightarrow m = 1\)
Với m = 1 thì hai mặt phẳng có phương trình \(2x - y + 3z - 5 = 0\) và \(4x - 2y + 6z - 10 = 0\) nên chúng trùng nhau. Vậy Không tồn tại m để hai mặt phẳng đó song song.
LG b
Hai mặt phẳng đó trùng nhau ;
Giải chi tiết:
Với m = 1 thì hai mặt phẳng đó trùng nhau.
LG c
Hai mặt phẳng đó cắt nhau ;
Giải chi tiết:
Với \(m \ne 1\) thì hai mặt phẳng đó cắt nhau.
LG d
Hai mặt phẳng đó vuông góc?
Giải chi tiết:
Hai mặt phẳng đó vuông góc với nhau khi và chỉ khi
\(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 0 \Leftrightarrow 2\left( {m + 3} \right) + 2m + 3\left( {5m + 1} \right) = 0 \Leftrightarrow 19m + 9 = 0 \Leftrightarrow m = {{ - 9} \over {19}}\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 18 trang 90 SGK Hình học 12 Nâng cao timdapan.com"