Trong các bài từ 51 đến 63, hãy chọn kết quả đúng trong các kết quả đã cho.
chọn kết quả đúng trong các kết quả đã cho.
Câu 51
Giá trị lớn nhất của các biểu thức \({\sin ^4}x + {\cos ^4}x\) là :
A. 0
B. 1
C. 2
D. \({1 \over 2}\)
Lời giải chi tiết:
Chọn B vì:
\({\sin ^4}x + {\cos ^4}x \)
\( = \left( {{{\sin }^2}x + {{\cos }^2}x} \right)^2 - 2{\sin ^2}x{\cos ^2}x\)
\(= 1 - 2{\sin ^2}x{\cos ^2}x \le 1\)
Câu 52
Giá trị bé nhất của biểu thức \(\sin x + \sin \left( {x + {{2\pi } \over 3}} \right)\) là
A. -2
B. \({{\sqrt 3 } \over 2}\)
C. -1
D. 0
Lời giải chi tiết:
Ta có: \(\sin x + \sin \left( {x + {{2\pi } \over 3}} \right)\)
\(=2\sin \left( {x + {\pi \over 3}} \right)\cos {\pi \over 3}\)
\(= \sin \left( {x + {\pi \over 3}} \right) \ge - 1\)
Chọn C
Câu 53
Tập giá trị của hàm số \(y = 2\sin2x + 3\) là :
A. \([0 ; 1]\)
B. \([2 ; 3]\)
C. \([-2 ; 3]\)
D. \([1 ; 5]\)
Lời giải chi tiết:
Ta có: \(-1 ≤ \sin 2x ≤ 1 \) \( \Rightarrow - 2 \le 2\sin 2x \le 2 \)
\(\Rightarrow 1 \le 2\sin 2x + 3 \le 5\)
\(⇒ 1 ≤ y ≤ 5\)
Chọn D
Câu 54
Tập giá trị của hàm số \(y = 1 – 2|\sin3x|\) là
A. \([-1 ; 1]\)
B. \([0 ; 1]\)
C. \([-1 ; 0]\)
D. \([-1 ; 3]\)
Lời giải chi tiết:
Vì \(0 ≤ |\sin3x| ≤ 1\) nên \(-1 ≤ y ≤ 1\)
Chọn A
Câu 55
Giá trị lớn nhất của biểu thức \(y = {\cos ^2}x - \sin x\) là
A. 2
B. 0
C. \({5 \over 4}\)
D. 1
Lời giải chi tiết:
Ta có:
\(\eqalign{
& y = 1 - {\sin ^2}x - \sin x \cr&= 1 - \left( {{{\sin }^2}x + \sin x} \right) \cr
& = {5 \over 4} - \left( {{{\sin }^2}x + \sin x + {1 \over 4}} \right) \cr&= {5 \over 4} - {\left( {\sin x + {1 \over 2}} \right)^2} \le {5 \over 4} \cr} \)
Chọn C
Câu 56
Tập giá trị của hàm số \(y = 4\cos2x – 3\sin2x + 6\) là :
A. \([3 ; 10]\)
B. \([6 ; 10]\)
C. \([-1 ; 13]\)
D. \([1 ; 11]\)
Lời giải chi tiết:
Ta có:
\(\eqalign{& 4\cos 2x - 3\sin 2x\cr& = 5\left( {{4 \over 5}\cos 2x - {3 \over 5}\sin 2x} \right) \cr & = 5\left( {\cos 2x\cos \alpha - \sin 2x\sin \alpha } \right)\cr&\text{với}\,\left\{ {\matrix{{\cos \alpha = {4 \over 5}} \cr {\sin \alpha = {3 \over 5}} \cr} } \right. \cr & = 5\cos \left( {2x + \alpha } \right) \cr&\Rightarrow y = 6 + 5\cos \left( {2x + \alpha } \right)\cr& \Rightarrow 1 \le y \le 11 \cr} \)
Chọn D
Câu 57
Khi \(x\) thay đổi trong khoảng \(\left( {{{5\pi } \over 4};{{7\pi } \over 4}} \right)\) thì \(y = \sin x\) lấy mọi giá trị thuộc
A. \(\left[ {{{\sqrt 2 } \over 2};1} \right]\)
B. \(\left[ { - 1; - {{\sqrt 2 } \over 2}} \right)\)
C. \(\left[ { - {{\sqrt 2 } \over 2};0} \right]\)
D. \(\left[ { - 1;1} \right]\)
Lời giải chi tiết:
Ta có:
\({{5\pi } \over 4} < x < {{7\pi } \over 4} \)
\(\Rightarrow - 1 \le \sin x < - {{\sqrt 2 } \over 2} \)
\(\Rightarrow - 1 \le y < - {{\sqrt 2 } \over 2}\)
Chọn B
Câu 58
Khi \(x\) thay đổi trong nửa khoảng \(\left( { - {\pi \over 3};{\pi \over 3}} \right]\) thì \(y = \cos x\) lấy mọi giá trị thuộc
A. \(\left[ {{1 \over 2};1} \right]\)
B. \(\left( { - {1 \over 2};{1 \over 2}} \right)\)
C. \(\left( { - {1 \over 2};{1 \over 2}} \right)\)
D. \(\left[ { - 1;{1 \over 2}} \right]\)
Lời giải chi tiết:
Ta có:
\( - {\pi \over 3} < x \le {\pi \over 3}\)
\(\Rightarrow {1 \over 2} \le \cos x \le 1\)
\(\Rightarrow {1 \over 2} \le y \le 1\)
Chọn A
Câu 59
Số nghiệm của phương trình \(\sin \left( {x + {\pi \over 4}} \right) = 1\) thuộc đoạn \([π ; 2π]\) là
A. 1
B. 2
C. 3
D. 0
Lời giải chi tiết:
Ta có:
\(\sin \left( {x + {\pi \over 4}} \right) = 1 \)
\(\Leftrightarrow x + {\pi \over 4} = {\pi \over 2} + k2\pi \)
\(\Leftrightarrow x = {\pi \over 4} + k2\pi \)
\(\pi \le \frac{\pi }{4} + k2\pi \le 2\pi \Leftrightarrow \frac{3}{8} \le k \le \frac{7}{8}\)
Do k nguyên nên không có k thỏa mãn.
Phương trình không có nghiệm thuộc \([π ; 2π]\)
Chọn C
Câu 60
Số nghiệm của phương trình \(\sin \left( {2x + {\pi \over 4}} \right) = - 1\) thuộc đoạn \([0 ; π]\) là
A. 1
B. 2
C. 3
D. 0
Lời giải chi tiết:
Ta có:
\(\sin \left( {2x + {\pi \over 4}} \right) = - 1 \)
\(\Leftrightarrow 2x + {\pi \over 4} = - {\pi \over 2} + k2\pi \)
\(\Leftrightarrow x = - {{3\pi } \over 8} + k\pi \)
\(0 \le - \frac{{3\pi }}{8} + k\pi \le \pi \Leftrightarrow \frac{3}{8} \le k \le \frac{{11}}{8}\)
\(\Rightarrow k = 1\) ta được nghiệm \(x = {{5\pi } \over 8} \in \left[ {0;\pi } \right]\)
Chọn A
Câu 61
Một nghiệm của phương trình \({\sin ^2}x + {\sin ^2}2x + {\sin ^2}3x = 2\) là
A. \({\pi \over {12}}\)
B. \({\pi \over {3}}\)
C. \({\pi \over {8}}\)
D. \({\pi \over {6}}\)
Lời giải chi tiết:
Chọn D. Thử trực tiếp.
Câu 62
Số nghiệm của phương trình\(\cos \left( {{x \over 2} + {\pi \over 4}} \right) = 0\) thuộc khoảng \((π ; 8π)\) là
A. 1
B. 3
C. 2
D. 4
Lời giải chi tiết:
Ta có:
\(\cos \left( {{x \over 2} + {\pi \over 4}} \right) = 0 \)
\(\Leftrightarrow {x \over 2} + {\pi \over 4} = {\pi \over 2} + k\pi \)
\(\Leftrightarrow x = {\pi \over 2} + k2\pi \)
\(\pi < \frac{\pi }{2} + k2\pi < 8\pi \Leftrightarrow \frac{1}{4} < k < \frac{{15}}{4}\)
Chọn \(k{\rm{ }} \in {\rm{ }}\left\{ {1;{\rm{ }}2;{\rm{ }}3} \right\}\)
Chọn B
Câu 63
Số nghiệm của phương trình \({{\sin 3x} \over {\cos x + 1}} = 0\) thuộc đoạn \([2π ; 4π]\) là
A. 2
B. 4
C. 5
D. 6
Lời giải chi tiết:
Ta có:
\({{\sin 3x} \over {\cos x + 1}} = 0\)
\(\Leftrightarrow \left\{ {\matrix{{\sin 3x = 0} \cr {\cos x \ne - 1} \cr} } \right. \)
\(\Leftrightarrow \left\{ {\matrix{{x = k{\pi \over 3}} \cr {x \ne \pi + k2\pi } \cr} } \right.\)
\(2\pi \le x \le 4\pi \Leftrightarrow 2\pi \le \frac{{k\pi }}{3} \le 4\pi \)
\(\Leftrightarrow 6 \le k \le 12\).
Cho k nhận các giá trị từ 6 đến 12 ta thấy \(x = \frac{{9\pi }}{3} = 3\pi \) có \(\cos x=-1\) nên không thỏa mãn(loại).
Chọn \(k \in {\rm{ }}\left\{ {6;{\rm{ }}7;{\rm{ }}8;{\rm{ }}10;{\rm{ }}11;{\rm{ }}12} \right\}\)
Chọn D.
Search google: "từ khóa + timdapan.com" Ví dụ: "Trong các bài từ 51 đến 63, hãy chọn kết quả đúng trong các kết quả đã cho. timdapan.com"