Giải mục 2 trang 22, 23 SGK Toán 9 tập 2 - Kết nối tri thức
Cho phương trình (2{x^2} - 7x + 5 = 0). a) Xác định các hệ số a, b, c rồi tính (a + b + c). b) Chứng tỏ rằng ({x_1} = 1) là một nghiệm của phương trình. c) Dùng định lí Viète để tìm nghiệm còn lại ({x_2}) của phương trình.
HĐ3
Trả lời câu hỏi Hoạt động 3 trang 22 SGK Toán 9 Kết nối tri thức
Cho phương trình \(2{x^2} - 7x + 5 = 0\).
a) Xác định các hệ số a, b, c rồi tính \(a + b + c\).
b) Chứng tỏ rằng \({x_1} = 1\) là một nghiệm của phương trình.
c) Dùng định lí Viète để tìm nghiệm còn lại \({x_2}\) của phương trình.
Phương pháp giải:
a) Xác định hệ số của phương trình và tính tổng.
b) Thay \({x_1} = 1\) vào phương trình \(2{x^2} - 7x + 5 = 0\) để chứng minh.
c) Theo định lí Viète ta có \({x_1} + {x_2} = \frac{7}{2}\). Thay \({x_1} = 1\) vào phương trình \({x_1} + {x_2} = \frac{7}{2}\), tìm được \({x_2}\).
Lời giải chi tiết:
a) Ta có: \(a = 2;b = - 7;c = 5\) nên \(a + b + c = 2 - 7 + 5 = 0\).
b) Thay \({x_1} = 1\) vào phương trình \(2{x^2} - 7x + 5 = 0\) ta có: \({2.1^2} - 7.1 + 5 = 0\) (luôn đúng)
Vậy \({x_1} = 1\) là một nghiệm của phương trình.
c) Theo định lí Viète ta có: \({x_1} + {x_2} = \frac{7}{2} \Rightarrow 1 + {x_2} = \frac{7}{2} \Rightarrow {x_2} = \frac{5}{2}\)
HĐ4
Trả lời câu hỏi Hoạt động 4 trang 22 SGK Toán 9 Kết nối tri thức
Cho phương trình \(3{x^2} + 5x + 2 = 0\).
a) Xác định các hệ số a, b, c rồi tính \(a - b + c\).
b) Chứng tỏ rằng \({x_1} = - 1\) là một nghiệm của phương trình.
c) Dùng định lí Viète để tìm nghiệm còn lại \({x_2}\) của phương trình.
Phương pháp giải:
a) Xác định hệ số của phương trình và tính tổng.
b) Thay \({x_1} = - 1\) vào phương trình \(3{x^2} + 5x + 2 = 0\) để chứng minh.
c) Theo định lí Viète ta có \({x_1}.{x_2} = \frac{2}{3}\). Thay \({x_1} = - 1\) vào phương trình \({x_1}.{x_2} = \frac{2}{3}\), tìm được \({x_2}\).
Lời giải chi tiết:
a) Ta có: \(a = 3;b = 5;c = 2\) nên \(a - b + c = 3 - 5 + 2 = 0\).
b) Thay \({x_1} = - 1\) vào phương trình \(3{x^2} + 5x + 2 = 0\) ta có: \(3.{\left( { - 1} \right)^2} + 5.\left( { - 1} \right) + 2 = 0\) (luôn đúng)
Vậy \({x_1} = - 1\) là một nghiệm của phương trình.
c) Theo định lí Viète ta có: \({x_1}.{x_2} = \frac{2}{3} \Rightarrow \left( { - 1} \right).{x_2} = \frac{2}{3} \Rightarrow {x_2} = \frac{{ - 2}}{3}\)
LT2
Trả lời câu hỏi Luyện tập 2 trang 23 SGK Toán 9 Kết nối tri thức
Tính nhẩm nghiệm của các phương trình sau:
a) \(3{x^2} - 11x + 8 = 0\);
b) \(4{x^2} + 15x + 11 = 0\);
c) \({x^2} + 2\sqrt 2 x + 2 = 0\), biết phương trình có một nghiệm là \(x = - \sqrt 2 \).
Phương pháp giải:
Xét phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\).
Nếu \(a + b + c = 0\) thì phương trình có một nghiệm là \({x_1} = 1\), còn nghiệm kia là \({x_2} = \frac{c}{a}\).
Nếu \(a - b + c = 0\) thì phương trình có một nghiệm là \({x_1} = - 1\), còn nghiệm kia là \({x_2} = - \frac{c}{a}\).
Lời giải chi tiết:
a) Ta có: \(a + b + c = 3 - 11 + 8 = 0\) nên phương trình có hai nghiệm phân biệt \({x_1} = 1;{x_2} = \frac{8}{3}\).
b) Ta có: \(a - b + c = 4 - 15 + 11 = 0\) nên phương trình có hai nghiệm phân biệt \({x_1} = - 1;{x_2} = \frac{{ - 11}}{4}\).
c) Gọi \({x_2}\) là nghiệm còn lại của phương trình.
Theo định lí Viète ta có: \({x_1}.{x_2} = 2\).
Do đó, \({x_2} = \frac{2}{{ - \sqrt 2 }} = - \sqrt 2 \).
Vậy phương trình có hai nghiệm \({x_1} = {x_2} = - \sqrt 2 \).
TTN
Trả lời câu hỏi Thử thách nhỏ trang 23 SGK Toán 9 Kết nối tri thức
Vuông nói: Hãy tìm một phương trình bậc hai mà tổng và tích các nghiệm của phương trình là hai số đối nhau.
Tròn nói: Tớ tìm ra rồi! Đó là phương trình \({x^2} + x + 1 = 0\).
Em có đồng ý với ý kiến của Tròn không? Vì sao?
Phương pháp giải:
Tính biệt thức \(\Delta = {b^2} - 4ac\) để chứng minh phương trình \({x^2} + x + 1 = 0\) vô nghiệm, từ đó đưa ý kiến.
Lời giải chi tiết:
Ta có: \(\Delta = {1^2} - 4.1.1 = - 3 < 0\) nên phương trình vô nghiệm.
Do đó, không tính được tổng và tích các nghiệm của phương trình \({x^2} + x + 1 = 0\).
Vậy em không đồng ý với kiến của Tròn.
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải mục 2 trang 22, 23 SGK Toán 9 tập 2 - Kết nối tri thức timdapan.com"