Giải bài 9.9 trang 65 SGK Toán 7 tập 2 - Kết nối tri thức

Cho tam giác ABC vuông tại A. Hai điểm M, N theo thứ tự nằm trên các cạnh AB, AC ( M,N không phải là đỉnh của tam giác) (H. 9.13) . Chứng minh rằng MN < BC.


Đề bài

Cho tam giác ABC vuông tại A. Hai điểm M, N theo thứ tự nằm trên các cạnh AB, AC ( M,N không phải là đỉnh của tam giác) (H. 9.13) . Chứng minh rằng MN < BC.

Phương pháp giải - Xem chi tiết

Sử dụng:

+ Góc tù là góc lớn nhất trong tam giác

+ Trong một tam giác, cạnh đối diện với góc lớn nhất là cạnh lớn nhất

Lời giải chi tiết

Ta có: Góc NMB là góc ngoài tại đỉnh M của tam giác AMN nên  là góc tù.

Góc BNC là góc ngoài tại đỉnh N của tam giác ABN nên ( định lí)  là góc tù.

Xét tam giác MNB có góc NMB là góc tù nên là góc lớn nhất trong tam giác. Cạnh NB đối diện với góc NMB nên là cạnh lớn nhất trong tam giác. Ta được NM < NB.(1)

Xét tam giác CNB có góc BNC là góc tù nên là góc lớn nhất trong tam giác. Cạnh CB đối diện với góc BNC nên là cạnh lớn nhất trong tam giác. Ta được NB < CB.(2)

Từ (1) và (2)  NM < CB.

Vậy MN < BC.



Bài học liên quan

Từ khóa phổ biến