Giải bài 9.44 trang 111 SGK Toán 8 tập 2 - Kết nối tri thức

Cho tam giác ABC vuông tại A có AB=5cm, AC=4cm.


Đề bài

Cho tam giác ABC vuông tại A có AB=5cm, AC=4cm. Gọi AH, HD lần lượt là các đường cao kẻ từ đỉnh A của tam giác ABC và đỉnh H của tam giác HAB
a) Chứng minh rằng ΔHDA  ΔAHC 

b) Tính độ dài các đoạn thẳng HA, HB, HC, HD

Phương pháp giải - Xem chi tiết

a) Chứng minh tam giác vuông HDA (vuông tại D) và tam giác vuông AHC (vuông tại H) có: \(\widehat {DHA} = \widehat {HAC}\)

b) Áp dụng định lý Pythagore trong tam giác vuông để tính HA, HB, HC, HD

Lời giải chi tiết

a) Có AB ⊥ AC, HD ⊥ AB

=> HD // AC

=> \(\widehat {DHA} = \widehat {HAC}\)

- Xét tam giác vuông HDA (vuông tại D) và tam giác vuông AHC (vuông tại H) có: \(\widehat {DHA} = \widehat {HAC}\)

=> ΔHDA  ΔAHC 

b) Xét tam giác ABC có: \(A{B^2} + A{C^2} = B{C^2}\)

mà AB=5cm, AC=4cm

=> \(BC = \sqrt {41} \)

- Có AH.BC=AB.AC

=> \(AH = \frac{{20\sqrt {41} }}{{41}}\)

=> \(H{B^2} = A{B^2} - A{H^2}\) (áp dụng định lý Pythagore trong tam giác vuông BHA)

=> \(HB = \frac{{20\sqrt {41} }}{{41}}\)

=> \(HC = \frac{{16\sqrt {41} }}{{41}}\)

- Xét tam giác vuông BDH và tam giác vuông BAC có: HD // AC

=> ΔBDH  ΔBAC 

=> \(\frac{{BH}}{{BC}} = \frac{{DH}}{{AC}}\)

=> \(H{\rm{D}} = \frac{{100}}{{41}}\)



Bài học liên quan

Từ khóa phổ biến