Bài 64 trang 87 SBT toán 8 tập 1

Giải bài 64 trang 87 sách bài tập toán 8. Chứng minh rằng điểm I đối xứng với điểm K qua AH...


Đề bài

Cho tam giác \(ABC\) cân tại \(A,\) đường cao \(AH.\) Trên cạnh \(AB\) lấy điểm \(I,\) trên cạnh \(AC\) lấy điểm \(K\) sao cho \(AI = AK.\) Chứng minh rằng điểm \(I\) đối xứng với điểm \(K\) qua  \(AH.\)

Phương pháp giải - Xem chi tiết

+) Sử dụng định nghĩa: Hai điểm gọi là đối xứng với nhau qua đường thẳng \(d\) nếu \(d\) là đường trung trực của đoạn thẳng nối hai điểm đó.

+) Trong tam giác cân, đường trung tuyến ứng với cạnh đáy cũng là đường trung trực, đường phân giác.

Lời giải chi tiết

\(∆ ABC\) cân tại \(A\)

\(AH ⊥ BC\;\; (gt)\)

Suy ra : \(AH\) là tia phân giác  \(\widehat A\)

\(AI = AK\;\; (gt)\)

\(⇒∆ AIK\) cân tại \(A\)

\(AH\) là tia phân giác \(\widehat A\)

nên \(AH\) là đường trung trực của \(IK\)

Vậy \(I\) đối xứng với \(K\) qua \(AH.\)