Giải bài 4.8 trang 50 sách bài tập toán 8 - Kết nối tri thức với cuộc sống
Cho tam giác DEF. Gọi H, K, I lần lượt là các trung điểm của DE, DF và EF. Chứng minh rằng tứ giác HKIE là hình bình hành.
Đề bài
Cho tam giác DEF. Gọi H, K, I lần lượt là các trung điểm của DE, DF và EF. Chứng minh rằng tứ giác HKIE là hình bình hành.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về đường trung bình của tam giác để chứng minh HI//DK, \(HI = DK\): Đường trung bình của tam giác song song với cạnh thứ ba và bằng nửa cạnh ấy.
Lời giải chi tiết
Tam giác DEF có: H, I lần lượt là trung điểm của DE, EF nên HI là đường trung bình của tam giác DEF. Do đó, HI//DF, \(HI = \frac{1}{2}DF\)
Mà K là trung điểm của DF nên \(DK = \frac{1}{2}DF\)
Suy ra: \(HI = DK\)
Tứ giác HDKI có: HI//DK, \(HI = DK\)
Do đó, tứ giác HKIE là hình bình hành.
Mẹo Tìm đáp án nhanh nhất
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 4.8 trang 50 sách bài tập toán 8 - Kết nối tri thức với cuộc sống timdapan.com"
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 4.8 trang 50 sách bài tập toán 8 - Kết nối tri thức với cuộc sống timdapan.com"