Giải bài 4 trang 48 Chuyên đề học tập Toán 10 – Cánh diều

Cho elip (E): \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\). Tìm tọa độ điểm \(M \in \left( E \right)\) sao cho độ dài \({F_2}M\) lớn nhất, biết \({F_2}\) là một tiêu điểm có hoành độ dương của (E)


Đề bài

Cho elip (E): \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\). Tìm tọa độ điểm \(M \in \left( E \right)\) sao cho độ dài \({F_2}M\) lớn nhất, biết \({F_2}\) là một tiêu điểm có hoành độ dương của (E)

Phương pháp giải - Xem chi tiết

Cho elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\) \((0 < b < a)\)

+ Độ dài bán kính qua tiêu của điểm \(M(x,y)\) trên (E) là: \(M{F_1} = a + \frac{c}{a}x;M{F_2} = a - \frac{c}{a}x.\)

\(M{F_1}\) có giá trị nhỏ nhất là \(a - c\) khi \(x =  - a\) và có giá trị lớn nhất là \(a + c\) khi \(x = a\)

\(M{F_2}\) có giá trị nhỏ nhất là \(a - c\) khi \(x = a\) và có giá trị lớn nhất là \(a + c\) khi \(x =  - a\)

Lời giải chi tiết

Elip có phương trình \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1 \Rightarrow a = 5,b = 3\)

Ta có: \(c = \sqrt {{a^2} - {b^2}}  = \sqrt {25 - 9}  = 4\)

Gọi tọa độ của \(M(x,y)\), ta có: \(M{F_2} = a - \frac{c}{a}x = 5 - \frac{4}{5}x\)

Vì \( - 5 \le x \le 5\) hay \( - 5 \le  - x \le 5\) nên \(5 + \frac{4}{5}\left( { - 5} \right) \le 5 + \frac{4}{5}( - x) \le 5 + \frac{4}{5}.5\)\( \Leftrightarrow 5 - 4 \le M{F_2} \le 5 + 4 \Leftrightarrow 1 \le M{F_2} \le 9\)

\( \Rightarrow M{F_2} \le 9\). Dấu bằng xảy ra khi \( - x = 5\)

Vậy độ dài \({F_2}M\) lớn nhất bằng 9 khi \(M( - 5,0)\)