Giải bài 23 trang 41 sách bài tập toán 8 - Cánh diều
Rút gọn rồi tính giá trị của biểu thức:
Đề bài
Rút gọn rồi tính giá trị của biểu thức:
a) \(A = \left( {\frac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}} - 1} \right).\frac{{x - y}}{{2y}}\) tại \(x = 5;y = 7\)
b) \(B = \frac{{2x + y}}{{2{x^2} - xy}} + \frac{{8y}}{{{y^2} - 4{x^2}}} + \frac{{2x - y}}{{2{x^2} + xy}}\) tại \(x = - \frac{1}{2};y = \frac{3}{2}\)
c) \(C = \left( {\frac{{{x^2}}}{y} - \frac{{{y^2}}}{x}} \right)\left( {\frac{{x + y}}{{{x^2} + xy + {y^2}}} + \frac{1}{{x - y}}} \right) - \frac{x}{y}\) tại \(x = - 15;y = 5\)
Phương pháp giải - Xem chi tiết
Áp dụng hằng đẳng thức và phép cộng trừ nhân chia phân thức đại số để rút gọn rồi tính giá trị của biểu thức.
Lời giải chi tiết
a) Rút gọn biểu thức:
\(A = \left( {\frac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}} - 1} \right).\frac{{x - y}}{{2y}} = \left( {\frac{{{x^2} + {y^2} - {x^2} + {y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}}} \right).\frac{{x - y}}{{2y}} = \frac{{2{y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}}.\frac{{x - y}}{{2y}} = \frac{y}{{x + y}}\)
Giá trị của biểu thức \(A\) tại \(x = 5;y = 7\) là: \(\frac{7}{{5 + 7}} = \frac{7}{{12}}\).
b) Rút gọn biểu thức:
\(\begin{array}{l}B = \frac{{2x + y}}{{2{x^2} - xy}} + \frac{{8y}}{{{y^2} - 4{x^2}}} + \frac{{2x - y}}{{2{x^2} + xy}}\\ = \frac{{2x + y}}{{x\left( {2x - y} \right)}} - \frac{{8y}}{{{{\left( {2x} \right)}^2} - {y^2}}} + \frac{{2x - y}}{{x\left( {2x + y} \right)}}\\ = \frac{{\left( {2x + y} \right)\left( {2x + y} \right)}}{{x\left( {2x - y} \right)\left( {2x + y} \right)}} - \frac{{8xy}}{{x\left( {2x - y} \right)\left( {2x + y} \right)}} + \frac{{\left( {2x - y} \right)\left( {2x + y} \right)}}{{x\left( {2x + y} \right)\left( {2x - y} \right)}}\\ = \frac{{{{\left( {2x + y} \right)}^2} - 8xy + {{\left( {2x - y} \right)}^2}}}{{x\left( {2x - y} \right)\left( {2x + y} \right)}}\\ = \frac{{4{x^2} + 4xy + {y^2} - 8xy + 4{x^2} - 4xy + {y^2}}}{{x\left( {2x + y} \right)\left( {2x - y} \right)}}\\ = \frac{{8{x^2} - 8xy + 2{y^2}}}{{x\left( {2x + y} \right)\left( {2x - y} \right)}} = \frac{{2{{\left( {2x - y} \right)}^2}}}{{x\left( {2x + y} \right)\left( {2x - y} \right)}} = \frac{{2\left( {2x - y} \right)}}{{x\left( {2x + y} \right)}}\end{array}\)
Giá trị của biểu thức\(B\) tại \(x = - \frac{1}{2};y = \frac{3}{2}\) là: \(\frac{{2\left( {2. - \frac{1}{2} - \frac{3}{2}} \right)}}{{ - \frac{1}{2}\left( {2.\frac{{ - 1}}{2} + \frac{3}{2}} \right)}} = 20\)
c) Rút gọn biểu thức:
\(\begin{array}{l}C = \left( {\frac{{{x^2}}}{y} - \frac{{{y^2}}}{x}} \right)\left( {\frac{{x + y}}{{{x^2} + xy + {y^2}}} + \frac{1}{{x - y}}} \right) - \frac{x}{y}\\ = \left( {\frac{{{x^3} - {y^3}}}{{xy}}} \right)\left( {\frac{{\left( {x + y} \right)\left( {x - y} \right) + {x^2} + xy + {y^2}}}{{\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)}}} \right) - \frac{x}{y}\\ = \left( {\frac{{{x^3} - {y^3}}}{{xy}}} \right)\left( {\frac{{{x^2} - {y^2} + {x^2} + xy + {y^2}}}{{{x^3} - {y^3}}}} \right) - \frac{x}{y}\\ = \frac{{{x^3} - {y^3}}}{{xy}}.\frac{{2{x^2} + xy}}{{{x^3} - {y^3}}} - \frac{x}{y}\\ = \frac{{\left( {{x^3} - {y^3}} \right).x.\left( {2x + y} \right)}}{{xy.\left( {{x^3} - {y^3}} \right)}} - \frac{x}{y}\\ = \frac{{2x + y}}{y} - \frac{x}{y} = \frac{{x + y}}{y}\end{array}\)
Giá trị của biểu thức \(C\) tại \(x = - 15;y = 5\) là: \(\frac{{ - 15 + 5}}{5} = 2\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải bài 23 trang 41 sách bài tập toán 8 - Cánh diều timdapan.com"