Giải Bài 10 trang 36 sách bài tập toán 7 tập 1 - Chân trời sáng tạo
Tìm số vô tỉ trong các số sau:
Đề bài
Tìm số vô tỉ trong các số sau:
\(\sqrt 5 \);\(\sqrt {\dfrac{{25}}{4}} \);\(\sqrt {\dfrac{{144}}{{49}}} \)
Phương pháp giải - Xem chi tiết
Ta sử dụng định nghĩa về số vô tỉ là gì rồi từ đó phân biệt số hữu tỉ, vô tỉ trong đề bài .
Lời giải chi tiết
Ta có: \(\sqrt 5 \) ≈2,236067977...5≈2,236067977... là số thập phân vô hạn không tuần hoàn nên \(\sqrt 5 \) là số vô tỉ.
Ta có : \({\left( {\dfrac{5}{2}} \right)^2} = \dfrac{5}{2}.\dfrac{5}{2} = \dfrac{{25}}{4}\left( {\dfrac{5}{2} > 0} \right)\)nên \(\sqrt {\dfrac{{25}}{4}} = \dfrac{5}{2} \Rightarrow - \sqrt {\dfrac{{25}}{4}} = - \dfrac{5}{2}\).Mà \( - \dfrac{5}{2}\)là số hữu tỉ nên \(\sqrt {\dfrac{{25}}{4}} \)là số hữu tỉ
Ta có: \({\left( {\dfrac{{12}}{7}} \right)^2} = \dfrac{{12}}{7}.\dfrac{{12}}{7} = \dfrac{{144}}{{49}}\left( {\dfrac{{12}}{7} > 0} \right)\) nên \(\sqrt {\dfrac{{144}}{{49}}} = \dfrac{{12}}{7}\) . Mà \(\dfrac{{12}}{7}\) là số hữu tỉ. Do đó \(\sqrt {\dfrac{{144}}{{49}}} \) là số hữu tỉ.
Search google: "từ khóa + timdapan.com" Ví dụ: "Giải Bài 10 trang 36 sách bài tập toán 7 tập 1 - Chân trời sáng tạo timdapan.com"