Đề số 6 – Đề kiểm tra học kì 1 – Toán 12

Đáp án và lời giải chi tiết Đề số 6 - Đề kiểm tra học kì 1 (Đề thi học kì 1) - Toán 12


Đề bài

Câu 1 : Cho hàm số \(y = \dfrac{{2x - 1}}{{x - 2}}\). Khẳng định nào sau đây đúng?

A. Hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\).

B. Hàm số nghịch biến trên khoảng \(\left( {\dfrac{1}{2}; + \infty } \right)\).

C. Hàm số nghịch biến trên khoảng \(\left( {2; + \infty } \right)\).   

D. Hàm số đồng biến trên khoảng \(\left( {\dfrac{1}{2}; + \infty } \right)\).

Câu 2 : Cho lăng trụ tứ giác đều có cạnh bằng a và cạnh bên bằng 2a. Diện tích xung quanh của hình lăng trụ đã cho bằng

A. \(10{a^2}\).

B. \(9{a^2}\).

C. \(8{a^2}\).

D. \(4{a^2}\).

Câu 3 : Thể tích của khối cầu tiếp xúc với tất cả các cạnh của hình lập phương cạnh \(2\sqrt 2 \) bằng

A. \(8\pi \sqrt 6 \).

B. \(\dfrac{{256\pi }}{3}\).

C. \(\dfrac{{32\pi }}{3}\).

D. \(\dfrac{{64\pi \sqrt 2 }}{3}\).

Câu 4 : Đồ thị hàm số \(y = \dfrac{{2x + 1}}{{4 - {x^2}}}\) có bao nhiêu tiệm cận?

A. 3.

B. 1.

C. 2.   

D. 4.

Câu 5 : Cho \(P = \sqrt[3]{a}.{a^{\dfrac{1}{3}}},\,a > 0\). Khẳng định nào sau đây đúng?

A. \(P = {a^{\dfrac{2}{3}}}\).

B. \(P = {a^{\dfrac{1}{9}}}\).

C. \(P = {a^{\dfrac{{11}}{3}}}\).

D. \(P = {a^2}\).

Câu 6 : Số giao điểm của đồ thị hàm số \(y = {x^3} - 4x + 1\) và đường thẳng \(y = x + 1\) bằng

A. 1.

B. 2.

C. 3.

D. 4.

Câu 7 : Bất phương trình \({\left( {\dfrac{e}{2}} \right)^{x - 1}} \le {\left( {\dfrac{e}{2}} \right)^{2x + 3}}\) có nghiệm là

A. \(x >  - 4\).

B. \(x <  - 4\).

C. \(x \le  - 4\).

D. \(x \ge  - 4\).

Câu 8 : Cho hàm số \(y = f(x)\) có đồ thị như hình vẽ

Khẳng định nào sau đây đúng?

A. Hàm số nghịch biến trên khoảng \(\left( { - 1; + \infty } \right)\).

B. Hàm số đồng biến trên khoảng \(\left( {1; + \infty } \right)\).

C. Hàm số đồng biến trên khoảng \(\left( { - 1; + \infty } \right)\).

D. Hàm số nghịch biến trên khoảng \(\left( { - 1;0} \right)\).

Câu 9 : Tập nghiệm S của bất phương trình \({\log _{\dfrac{1}{2}}}\left( {3x - 2} \right) > {\log _{\dfrac{1}{2}}}\left( {4 - x} \right)\) là

A. \(S = \left( {\dfrac{3}{2};4} \right)\).      

B. \(S = \left( { - \infty ;\dfrac{3}{2}} \right)\).

C. \(S = \left( {\dfrac{2}{3};3} \right)\).      

D. \(S = \left( {\dfrac{2}{3};\dfrac{3}{2}} \right)\).

Câu 10 : Cho biểu thức \(A = {\log _{\sqrt a }}{a^2} + {\log _{\dfrac{1}{2}}}{4^a},\,\,a > 0,\,a \ne 1\). Khẳng định nào sau đây đúng?

A.\(A = 4 + 2a\).        

B. \(A = 4 - 2a\).         

C. \(A = 1 + 2a\).       

D. \(A = 1 - 2a\).

Câu 11 : Số giao điểm của đồ thị hàm số \(y = \left| {x - 1} \right|\left( {\dfrac{1}{3}{x^2} - 2\left| x \right| + 3} \right)\) với trục hoành là

A. 3.

B. 4.

C. 1.

D. 5.

Câu 12 : Một hình đa diện có ít nhất bao nhiêu đỉnh?

A. 6.

B. 3.

C. 5.

D. 4.

Câu 13 : Tính đạo hàm của hàm số \(y = {x^e} + {e^x}\).

A. \(y' = {x^e}.\ln x + {e^x}\).

B. \(y' = e.\left( {{e^{x - 1}} + {x^{e - 1}}} \right)\).         

C. \(y' = x.\left( {{x^{e - 1}} + {e^{x - 1}}} \right)\).         

D. \(y' = e.\ln x + x\).

Câu 14 : Hàm số \(y = {x^3} - 3x\) có giá trị cực đại bằng

A. 2.

B. -2.

C. 1.

D. -1.

Câu 15 : Cho hàm số \(y = \dfrac{{{x^2} - 3x + 3}}{{x - 1}}\). Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \(\left[ { - 1;\dfrac{1}{2}} \right]\). Tính tích M.m.

A. \( - \dfrac{1}{2}\).

B. \( - 3\).        

C. \(\dfrac{{21}}{2}\).         

D. 0.

Câu 16 : Diện tích toàn phần của hình trụ có thiết diện qua trục là hình vuông cạnh a bằng

A. \(2\pi {a^2}\).

B. \(\dfrac{{3\pi {a^2}}}{2}\).

C. \(\pi {a^2}\).

D. \(\dfrac{{\pi {a^2}}}{2}\).

Câu 17 : Cho khối chóp S.ABC có ba cạnh SA, SB, SC cùng độ dài bằng a và vuông góc với nhau từng đôi một. Thể tích của khối chóp S.ABC bằng

A. \(\dfrac{{{a^3}}}{6}\).   

B. \({a^3}\).   

C. \(\dfrac{{{a^3}}}{2}\).   

D. \(\dfrac{{{a^3}}}{3}\).

Câu 18 : Cho hàm số \(y = f(x)\) liên tục trên R và có bảng biến thiên như hình vẽ

Khẳng định nào sau đây đúng?

A. Hàm số \(y = f(x)\) nghịch biến trên một đoạn có độ dài bằng 1.

B. Giá trị lớn nhất của hàm số \(y = f(x)\) trên R bằng 0.                             

C. Hàm số \(y = f(x)\) chỉ có một cực trị.                                          

D. Giá trị nhỏ nhất của hàm số \(y = f(x)\) trên R bằng -1.

Câu 19 : Thể tích của khối bát diện đều cạnh a bằng

A. \(\dfrac{{{a^3}\sqrt 2 }}{6}\).

B. \(\dfrac{{2{a^3}\sqrt 2 }}{3}\).

C. \(2{a^3}\sqrt 2 \).

D. \(\dfrac{{{a^3}\sqrt 2 }}{3}\).

Câu 20 : Trong không gian, cho hai điểm phân biệt A, B cố định. Xét điểm M di động luôn nhìn đoạn AB dưới một góc vuông. Hỏi điểm M thuộc mặt nào trong các mặt sau?

A. Mặt trụ.

B. Mặt nón.

C. Mặt cầu.

D. Mặt phẳng.

Câu 21 : Cho phương trình \({\log _5}\left( {{x^2} + x + 1} \right) = 1\). Khẳng định nào sau đây đúng?

A. Phương trình có một nghiệm bằng 0 và một nghiệm âm.                                     

B. Phương trình vô nghiệm.                                      

C. Phương trình có hai nghiệm âm.

D. Phương trình có hai nghiệm trái dấu.

Câu 22 : Phương trình \({\left( {{x^4}} \right)^{\dfrac{1}{{\sqrt 2 }}}} = {4^{\sqrt 2 }}\) có bao nhiêu nghiệm thực?

A. 1.

B. 3.

C. 2.

D. vô số.

Câu 23 : Hàm số \(y = \sqrt {{x^2} - x} \) nghịch biến trên khoảng

A. \(\left( { - \infty ;0} \right)\).

B. \(\left( {1; + \infty } \right)\).

C. \(\left( { - \infty ;\dfrac{1}{2}} \right)\).

D. \(\left( {0;1} \right)\).

Câu 24 : Cho hàm số \(y = {\log _2}x\). Xét các phát biểu

(1) Hàm số \(y = {\log _2}x\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\).

(2) Hàm số \(y = {\log _2}x\) có một điểm cực tiểu.

(3) Đồ thị hàm số \(y = {\log _2}x\) có tiệm cận.

Số phát biểu đúng là

A. 0.

B. 1.

C. 3.

D. 2.

Câu 25 : Cho hàm số \(y = f(x)\) có đồ thị như hình vẽ. Hàm số \(y = f(x)\) là

A. \(y = \dfrac{{3x - 1}}{{x + 2}}\).           

B. \(y = {x^3} - 3{x^2}\).

C. \(y =  - {x^3} + 3{x^2}\).

D. \(y = {x^4} - 4{x^2} + 4\).

Câu 26 : Các tiệm cận của đồ thị hàm số \(y = \dfrac{{2x + 1}}{{x - 1}}\) là

A. \(x = 1,\,\,y =  - 1\).

B. \(x = 2,\,\,y = 1\).

C. \(x =  - \dfrac{1}{2},\,\,y = 1\).

D. \(x = 1,\,\,y = 2\).

Câu 27 : Cắt một khối nón bởi mặt phẳng đi qua trục của nó, ta được một tam giác vuông cân có diện tích bằng 8. Khẳng định nào sau đây sai ?

A. Khối nón có diện tích đáy bằng \(8\pi \).

B. Khối nón có diện tích xung quanh bằng \(16\pi \sqrt 2 \). 

C. Khối nón có độ dài đường sinh bằng 4.

D. Khối nón có thể tích bằng \(\dfrac{{16\pi \sqrt 2 }}{3}\).

Câu 28 : Tổng tất cả các nghiệm của phương trình \({4^x} - {3.2^{x + 1}} + 8 = 0\) bằng 

A. \(1 + {\log _2}3\). 

B. \(1 - {\log _2}3\).

C. \(3\).           

D. \(6\).

Câu 29 : Hàm số nào sau đây có giá trị nhỏ nhất trên đoạn \(\left[ {0;2} \right]\) bằng -2?

A. \(y = {x^3} - 10\).

B. \(y = \sqrt {x + 2}  - 2\).

C. \(y = \dfrac{{x - 2}}{{x + 1}}\). 

D. \(y = {2^x} - 2\).

Câu 30 : Khối mười hai mặt đều là khối đa diện đều loại

A. \(\left\{ {3;4} \right\}\).

B. \(\left\{ {4;3} \right\}\).

C. \(\left\{ {5;3} \right\}\).

D. \(\left\{ {3;5} \right\}\).

Câu 31 : Cho mặt nón có chiều cao \(h = 6\), bán kính đáy \(r = 3\). Hình lập phương \(ABCD.A'B'C'D'\) đặt trong mặt nón sao cho trục của mặt nón đi qua tâm hai đáy của hình lập phương, một đáy của hình lập phương nằm trong cùng một mặt phẳng đáy của hình trụ, các đỉnh của đáy còn lại thuộc các đường sinh của hình nón. Độ dài đường chéo của hình lập phương bằng

A. \(3\sqrt 3 \).

B. \(\dfrac{{3\sqrt 6 }}{2}\).

C. \(6\sqrt 3 \left( {\sqrt 2  - 1} \right)\).

D. \(6\left( {\sqrt 2  - 1} \right)\).

Câu 32 : Bạn Nam làm một cái máng thoát nước mưa, mặt cắt là hình thang cân có độ dài hai cạnh bên và cạnh đáy đều bằng 20cm, thành máng nghiêng với mặt đất một góc \(\varphi \)\(\left( {{0^0} < \varphi  < {{90}^0}} \right)\). Bạn Nam phải nghiêng thành máng một góc trong khoảng nào sau đây để lượng mưa thoát được là nhiều nhất?

A. \(\left[ {{{70}^0};{{90}^0}} \right)\).

B. \(\left[ {{{10}^0};{{30}^0}} \right)\).    

C. \(\left[ {{{30}^0};{{50}^0}} \right)\)

D. \(\left[ {{{50}^0};{{70}^0}} \right)\).

Câu 33 : Theo thống kê dân số năm 2017, mật độ dân số của Việt Nam là 308 người\(/k{m^2}\) và mức tăng trưởng dân số là \(1,03\% /\)năm. Với mức tăng trưởng như vậy, tới năm bao nhiêu mật độ dân số Việt Nam đạt 340 người \(/k{m^2}\)?

A. Năm 2028.

B. Năm 2027. 

C. Năm 2026.

D. Năm 2025.

Câu 34 : Cho các hàm số \(y = {\log _a}x,\,\,y = {\log _b}x\) và \(y = {c^x}\) (với a, b, c là các số dương khác 1) có đồ thị như hình vẽ

Khẳng định nào sau đây đúng?

A. \(c > b > a\).

B. \(c > a > b\).           

C. \(a > b > c\).

D. \(b > a > c\).

                                                                                                           

Câu 35 : Biết rằng phương trình \({5^{2x + \sqrt {1 - 2x} }} - m{.5^{1 - \sqrt {1 - 2x} }} = {4.5^x}\) có nghiệm khi và chỉ khi \(m \in \left[ {a;b} \right]\), với m là tham số. Giá trị của \(b - a\) bằng

A. \(\dfrac{9}{5}\).

B. 9

C. \(\dfrac{1}{5}\).

D. 1.

Câu 36 : Cho phương trình \({\log _4}\left( {{x^2} - 4x + 4} \right) + {\log _{16}}{\left( {x + 4} \right)^4} - m = 0\). Tìm tất cả các giá trị của tham số thực m để phương trình đã cho có 4 nghiệm phân biệt.

A. \(m < 2{\log _2}3\).

B. \(m >  - 2{\log _2}3\).                                           

C. \(m \in \emptyset \) .

D. \( - 2{\log _2}3 < m < 2{\log _2}3\).

Câu 37 : Cho hình chóp S.ABCD có đáy là hình thang vuông tại AB, \(AB = BC = 2\), \(AD = 4\); mặt bên SAD nằm trong mặt phẳng vuông góc với đáy và có diện tích bằng 6. Thể tích khối S.BCD bằng 

A. 6.

B. 18. 

C. 2.

D. 1.

Câu 38 : Cho tứ diện ABCD có \(AB = x\) thay đổi, tất cả các cạnh còn lại có độ dài a. Tính khoảng cách giữa hai đường thẳng ABCD trong trường hợp thể tích của khối tứ diện ABCD lớn nhất.

A. \(\dfrac{{a\sqrt 3 }}{3}\).

B. \(\dfrac{{a\sqrt 6 }}{4}\).

C. \(\dfrac{{a\sqrt 3 }}{4}\).

D. \(\dfrac{{a\sqrt 6 }}{3}\).

Câu 39 : Cho hình chóp tam giác đều S.ABC với \(SA = \sqrt 6 \), \(AB = 3\). Diện tích của mặt cầu có tâm A và tiếp xúc với mặt phẳng (SBC) bằng

A. \(\dfrac{{54\pi }}{5}\).

B. \(\dfrac{{108\pi }}{5}\).

C. \(60\pi \).

D. \(18\pi \).

Câu 40 : Đồ thị của hàm số nào sau đây có ba tiệm cận?

A. \(y = \dfrac{{\sqrt x }}{{{x^2} - 2x}}\).

B. \(y = \dfrac{x}{{\sqrt {1 - {x^2}} }}\).

C. \(y = \dfrac{1}{{\sqrt x }}\).

D. \(y = \dfrac{x}{{{x^2} - 2x}}\).

Câu 41 : Một khối gỗ hình hộp chữ nhật có chiều dài, chiều rộng và chiều cao lần lượt là 30cm, 20cm và 30cm (như hình vẽ)

Một con kiến xuất phát từ điểm A muốn tới điểm B thì quãng đường ngắn nhất nó phải đi là bao nhiêu cm?

A. \(30 + 10\sqrt {14} cm\).

B. \(10\sqrt {34} cm\).           

C. \(10\sqrt {22} cm\).

D. \(20 + 30\sqrt 2 cm\).

Câu 42 : Cho hàm số \(y = \dfrac{{{x^4} + 3}}{x}\) có giá trị cực đại \({y_1}\) và giá trị cực tiểu \({y_2}\). Giá trị của \(S = {y_1} - {y_2}\) bằng

A. \(S = 8\).

B. \(S = 0\).

C. \(S =  - 2\).

D. \(S =  - 8\).

Câu 43 : Cho hàm số \(y = f(x)\) và \(y = g(x)\)có đồ thị lần lượt như hình vẽ   

Đồ thị hàm số \(y = f(x).g(x)\) là đồ thị nào dưới đây?

Câu 44 : Phương trình \({e^x} - {e^{\sqrt {2x + 1} }} = 1 - {x^2} + 2\sqrt {2x + 1} \) có nghiệm trong khoảng nào sau đây?

A. \(\left( {\dfrac{1}{2};1} \right)\).

B. \(\left( {2;\dfrac{5}{2}} \right)\).

C. \(\left( {1;\dfrac{3}{2}} \right)\).

D. \(\left( {\dfrac{3}{2};2} \right)\).

Câu 45 : Tìm tất cả các giá trị thực của tham số m để hàm số \(y = {x^3} - 3x + m\) có giá trị cực đại và giá trị cực tiểu trái dấu.

A. \(m \in \left\{ { - 2;2} \right\}\).

B. \(m <  - 2\) hoặc \(m > 2\).

C. \( - 2 < m < 2\).

D. \(m \in \mathbb{R}\).

Câu 46 : Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, \(SA \bot \left( {ABCD} \right)\) và \(SA = a\). Gọi E là trung điểm của cạnh AB. Diện tích mặt cầu ngoại tiếp hình chóp \(S.BCE\) bằng

A. \(14\pi {a^2}\).

B. \(11\pi {a^2}\).

C. \(8\pi {a^2}\).

D. \(12\pi {a^2}\).

Câu 47 : Gọi giá trị nhỏ nhất, giá trị lớn nhất của hàm số \(y = x.\ln x\) trên đoạn \(\left[ {\dfrac{1}{{{e^2}}};e} \right]\) lần lượt là mM. Tích M.m bằng

A. -1

B. 2e.

C. \(\dfrac{{ - 2}}{e}\).

D. 1.

Câu 48 : Phương trình \({3.9^x} - {7.6^x} + {2.4^x} = 0\) có hai nghiệm \({x_1},\,\,{x_2}\). Tổng  \({x_1} + {x_2}\) bằng

A. 1.

B. \({\log _{\dfrac{3}{2}}}\dfrac{7}{3}\).

C. \(\dfrac{7}{3}\).   

D. -1.

Câu 49 : Phương trình \({\left| x \right|^3} - 3{x^2} - {m^2} = 0\) (với m là tham số thực) có nhiều nhất bao nhiêu nghiệm phân biệt ?

A. 4 nghiệm.

B. 3 nghiệm.

C. 2 nghiệm.

D. 6 nghiệm.

Câu 50 : Cho hàm số \(y = \dfrac{{2x + 3}}{{x - 2}}\) có đồ thị \(\left( C \right)\). Có bao nhiêu giá trị thực của tham số m để đường thẳng \(y = 2x + m\) cắt đồ thị \(\left( C \right)\) tại hai điểm phân biệt mà tiếp tuyến của \(\left( C \right)\) tại hai điểm đó song song với nhau?

A. 0.

B. 2.

C. Vô số.

D. 1.

Lời giải chi tiết


1. C 11. A 21. D 31. A 41. B
2. C 12. D 22. A 32. D 42. D
3. C 13. B 23. A 33. B 43. C
4. A 14. A 24. D 34. D 44. B
5. A 15. C 25. B 35. A 45. C
6. C 16. B 26. D 36. A 46. A
7. C 17. A 27. B 37. C 47. A
8. B 18. A 28. C 38. B 48. D
9. D 19. D 29. C 39. B 49. B
10. B 20. C 30. C 40. A 50. D

Xem lời giải chi tiết đề thi học kì 1 tại TimDapAn.com