Đề thi giữa kì 1 Toán 7 - Đề số 6 - Chân trời sáng tạo
Phần trắc nghiệm (3 điểm) Câu 1. Chọn khẳng định đúng
Đề bài
Phần trắc nghiệm (3 điểm)
Câu 1. Chọn khẳng định đúng
A. \(9 \notin Z\) |
B. \(\frac{{ - 1}}{3}\; \in Q\) |
C. \( - 5 \in I\) |
D. \(2,5\; \in Z\) |
Câu 2. Số đối của \(\frac{{ - 8}}{9}\) là số nào?
A. \(\frac{9}{8}\). |
B. \(\frac{9}{{ - 8}}\). |
C. \( - \frac{8}{9}\). |
D. \(\frac{8}{9}\). |
Câu 3. Hãy sắp xếp các số hữu tỉ sau theo thứ tự từ bé đến lớn: \(\,\frac{{ - 15}}{{ - 17}};\,0;\,\frac{{25}}{{17}}; - \frac{3}{{17}}\) ?
A. \( - \frac{3}{{17}};0;\,\frac{{25}}{{17}};\,\frac{{ - 15}}{{ - 17}}\). |
B. \(\frac{{25}}{{17}};\,0;\frac{{ - 15}}{{ - 17}};\, - \frac{3}{{17}}\). |
C. \( - \frac{3}{{17}};0;\,\frac{{ - 15}}{{ - 17}};\frac{{25}}{{17}}\). |
D. \(\frac{{25}}{{17}};\,\frac{{ - 15}}{{ - 17}};\,0;\, - \frac{3}{{17}}\). |
Câu 4. Quan sát trục số sau. Khẳng định nào sau đây đúng?
A. Điểm \(A\) biểu diễn số hữu tỉ \(\frac{1}{2}\). |
B. Điểm \(B\) biểu diễn số hữu tỉ \(2\). |
C. Điểm \(C\) biểu diễn số hữu tỉ \(\frac{1}{2}\). |
D. Điểm A biểu diễn số hữu tỉ \(\frac{{ - 1}}{2}\). |
Câu 5. Hình hộp chữ nhật có bao nhiêu cạnh?
A. 9 cạnh. |
B. 10 cạnh. |
C. 11 cạnh. |
D. 12 cạnh. |
Câu 6. Ở mỗi đỉnh của hình lập phương có bao nhiêu góc?
A. 3 góc bẹt |
B. 3 góc vuông. |
C. Không có góc nào. |
D. 5 góc. |
Câu 7. Đường chéo của hình hộp chữ nhật \(ABCD.A'B'C'D'\) là đường nào?
A. \(A'D\). |
B. \(BC'\). |
C. \(AC'\). |
D. \(BD\). |
Câu 8. Hình hộp chữ nhật \(ABCD.A'B'C'D'\)có \(BC = 7\,{\rm{cm}}\). Khẳng định nào sau đây sai?
A. B’C’= 7 cm. |
B. \(AD = 7\,{\rm{cm}}\). |
C. \(A'D' = 7\,{\rm{cm}}\). |
D. \(E'B = 7\,{\rm{cm}}\). |
Câu 9. Trong các hình sau, hình nào là hình lăng trụ đứng tam giác
A. Hình 1. |
B. Hình 2. |
C. Hình 3. |
D. Hình 4 |
Câu 10. Cho hình lăng trụ đứng tứ giác \(MNPQ.EFGH\) có cạnh \(ME = 7\,{\rm{cm}}\),\(HG = 4\,{\rm{cm}}\). Khẳng định nào sau đây đúng?
A. \(NF = 7\,{\rm{cm}}\). |
B. \(NF = 4\,{\rm{cm}}\). |
C. \(EH = 4\,{\rm{cm}}\). |
D. \(NP = 7\,{\rm{cm}}\). |
Câu 11. Các mặt bên của hình lăng trụ đứng tứ giác ABCD.A’B’C’D’ là những hình gì?
A. Tam giác. |
B. Tứ giác. |
C. Hình chữ nhật. |
D. Hình vuông. |
Câu 12. Cho hình lăng trụ đứng tam giác như hình bên. Mặt đáy của lăng trụ đứng là:
A.ABC. |
B.ABPM. |
C.ACMN. |
D.BCPN. |
Phần tự luận (7 điểm)
Bài 1. (0,75 điểm). Trong các số 2,5; 0; \( - \frac{1}{3}\), \(1\frac{1}{2}\) số nào là số hữu tỉ dương? Vì sao?
Bài 2. (1,5 điểm). Thực hiện phép tính:
a. \(\frac{2}{3}:\frac{{ - 6}}{9} + \frac{1}{7}\); |
b. \(\frac{{ - 3}}{{11}} \cdot \frac{5}{9} + \frac{4}{9} \cdot \frac{{ - 3}}{{11}}\); |
c. \(\frac{{{9^5}{{.8}^2}}}{{{{27}^3}.16}}\); |
Bài 3. (1,5 điểm). Tìm số hữu tỉ \(x\), biết:
a. \(25\% - x = 1\frac{5}{6}\); |
b. \(\frac{{ - 5}}{4} + \frac{2}{3}:x = 0,75\). |
Bài 4. (1,0 điểm). Cho hình hộp chữ nhật ABCD.MNHQ như hình vẽ, có AB = 5cm, BC = 7cm, AM = 3cm Tính diện tích xung quanh và thể tích của hình hộp chữ nhật này.
Bài 5. (0,75 điểm). Thùng đựng của một máy cắt cỏ có dạng lăng trụ đứng tam giác. Hãy tính thể tích của thùng.
Bài 6. (0,5 điểm). Một căn phòng hình hộp chữ nhật có chiều dài \(4,5m\), chiều rộng \(4m\) , chiều cao \(3m\). Người ta muốn lăn sơn trần nhà và bốn bức tường. Biết rằng tổng diện tích các cửa là \(11\,{m^2}\). Tính diện tích cần lăn sơn ?
Bài 7. (1,0 điểm). Một cửa hàng bán quần áo có chương trình khuyến mãi như sau: Khách hàng có thẻ thành viên sẽ được giảm 15% tổng số tiền của hóa đơn. Bạn Bình có thẻ thành viên, bạn mua hai chiếc áo sơ mi, mỗi áo đều có giá 200 000 đồng và một quần Jeans với giá 350 000 đồng. Bạn đưa cho người thu ngân 1 triệu đồng. Hỏi bạn Bình được trả lại bao nhiêu tiền?
-------- Hết --------
Lời giải
Phần trắc nghiệm (3 điểm)
Câu 1: B |
Câu 2: D |
Câu 3: C |
Câu 4: A |
Câu 5: D |
Câu 6: B |
Câu 7. C |
Câu 8. D |
Câu 9. C |
Câu 10. A |
Câu 11. C |
Câu 12. A |
Câu 1. Chọn khẳng định đúng
A. \(9 \notin Z\) |
B. \(\frac{{ - 1}}{3}\; \in Q\) |
C. \( - 5 \in I\) |
D. \(2,5\; \in Z\) |
Phương pháp
Dựa vào khái niệm các tập hợp đã học.
Lời giải
\(\frac{{ - 1}}{3}\;\) là số hữu tỉ nên \(\frac{{ - 1}}{3}\; \in Q\).
Đáp án B.
Câu 2. Số đối của \(\frac{{ - 8}}{9}\) là số nào?
A. \(\frac{9}{8}\). |
B. \(\frac{9}{{ - 8}}\). |
C. \( - \frac{8}{9}\). |
D. \(\frac{8}{9}\). |
Phương pháp
Dựa vào khái niệm số đối.
Lời giải
Số đối của \(\frac{{ - 8}}{9}\) là \(\frac{8}{9}\).
Đáp án D.
Câu 3. Hãy sắp xếp các số hữu tỉ sau theo thứ tự từ bé đến lớn: \(\,\frac{{ - 15}}{{ - 17}};\,0;\,\frac{{25}}{{17}}; - \frac{3}{{17}}\) ?
A. \( - \frac{3}{{17}};0;\,\frac{{25}}{{17}};\,\frac{{ - 15}}{{ - 17}}\). |
B. \(\frac{{25}}{{17}};\,0;\frac{{ - 15}}{{ - 17}};\, - \frac{3}{{17}}\). |
C. \( - \frac{3}{{17}};0;\,\frac{{ - 15}}{{ - 17}};\frac{{25}}{{17}}\). |
D. \(\frac{{25}}{{17}};\,\frac{{ - 15}}{{ - 17}};\,0;\, - \frac{3}{{17}}\). |
Phương pháp
So sánh lần lượt các cặp số hữu tỉ với nhau.
Lời giải
Ta có: \( - \frac{3}{{17}} < 0\) nên \( - \frac{3}{{17}}\) là số bé nhất.
\(\,\frac{{ - 15}}{{ - 17}} = \frac{{15}}{{17}} > \,0\).
So sánh \(\frac{{25}}{{17}}\) với \(\frac{{15}}{{17}}\): Vì 25 > 15 nên \(\frac{{25}}{{17}}\) > \(\frac{{15}}{{17}} = \frac{{ - 15}}{{ - 17}}\).
Vậy các số hữu tỉ sắp xếp theo thứ tự từ bé đến lớn là: \( - \frac{3}{{17}};0;\,\frac{{ - 15}}{{ - 17}};\frac{{25}}{{17}}\).
Đáp án C.
Câu 4. Quan sát trục số sau. Khẳng định nào sau đây đúng?
A. Điểm \(A\) biểu diễn số hữu tỉ \(\frac{1}{2}\). |
B. Điểm \(B\) biểu diễn số hữu tỉ \(2\). |
C. Điểm \(C\) biểu diễn số hữu tỉ \(\frac{1}{2}\). |
D. Điểm A biểu diễn số hữu tỉ \(\frac{{ - 1}}{2}\). |
Phương pháp
Quan sát trục số để xác định các điểm trên trục số.
Lời giải
Quan sát trục số ta thấy mỗi ô là 1 đơn vị nên các điểm biểu diễn các số sau:
Điểm A biểu diễn số hữu tỉ \(\frac{1}{2}\).
Điểm B biểu diễn số hữu tỉ 1.
Điểm C biểu diễn số hữu tỉ \(\frac{{ - 7}}{2}\).
Vậy đáp án đúng là A.
Đáp án A.
Câu 5. Hình hộp chữ nhật có bao nhiêu cạnh?
A. 9 cạnh. |
B. 10 cạnh. |
C. 11 cạnh. |
D. 12 cạnh. |
Phương pháp
Dựa vào kiến thức về hình hộp chữ nhật.
Lời giải
Hình hộp chữ nhật có 4 cạnh bên và 8 cạnh đáy nên có 4 + 8 = 12 cạnh.
Đáp án D.
Câu 6. Ở mỗi đỉnh của hình lập phương có bao nhiêu góc?
A. 3 góc bẹt |
B. 3 góc vuông. |
C. Không có góc nào. |
D. 5 góc. |
Phương pháp
Vẽ 1 hình lập phương và quan sát các góc ở mỗi đỉnh.
Lời giải
Đỉnh A có 3 góc vuông : góc CAE, góc BAE và góc BAC. Tương tự với các đỉnh khác.
Đáp án B.
Câu 7. Đường chéo của hình hộp chữ nhật \(ABCD.A'B'C'D'\) là đường nào?
A. \(A'D\). |
B. \(BC'\). |
C. \(AC'\). |
D. \(BD\). |
Phương pháp
Quan sát hình vẽ để tìm các đường chéo của hình hộp.
Lời giải
Các đường chéo của hình hộp chữ nhật ABCD.A’B’C’D’ là: AC’, BD’, CA’, DB’.
Đáp án C.
Câu 8. Hình hộp chữ nhật \(ABCD.A'B'C'D'\)có \(BC = 7\,{\rm{cm}}\). Khẳng định nào sau đây sai?
A. B’C’= 7 cm. |
B. \(AD = 7\,{\rm{cm}}\). |
C. \(A'D' = 7\,{\rm{cm}}\). |
D. \(A'B = 7\,{\rm{cm}}\). |
Phương pháp
Xác định các cạnh có độ dài bằng cạnh BC.
Lời giải
Các cạnh bằng cạnh BC là: AD, A’D’, B’C’.
Đáp án D.
Câu 9. Trong các hình sau, hình nào là hình lăng trụ đứng tam giác
A. Hình 1. |
B. Hình 2. |
C. Hình 3. |
D. Hình 4 |
Phương pháp
Dựa vào đặc điểm của hình lăng trụ đứng tam giác.
Lời giải
Trong các hình trên, chỉ có hình 3 là hình lăng trụ đứng tam giác.
Đáp án C.
Câu 10. Cho hình lăng trụ đứng tứ giác \(MNPQ.EFGH\) có cạnh \(ME = 7\,{\rm{cm}}\),\(HG = 4\,{\rm{cm}}\). Khẳng định nào sau đây đúng?
A. \(NF = 7\,{\rm{cm}}\). |
B. \(NF = 4\,{\rm{cm}}\). |
C. \(EH = 4\,{\rm{cm}}\). |
D. \(NP = 7\,{\rm{cm}}\). |
Phương pháp
Xác định các cạnh bằng nhau.
Lời giải
NF = ME = 7cm nên A đúng, B sai.
EH và NP chưa đủ điều kiện để xác định.
Đáp án A.
Câu 11. Các mặt bên của hình lăng trụ đứng tứ giác ABCD.A’B’C’D’ là những hình gì?
A. Tam giác. |
B. Tứ giác. |
C. Hình chữ nhật. |
D. Hình vuông. |
Phương pháp
Dựa vào đặc điểm của hình lăng trụ đứng tứ giác.
Lời giải
Các mặt bên của hình lăng trụ đứng tam giác là hình chữ nhật (vì có 2 cặp cạnh đối bằng nhau và các góc là góc vuông).
Đáp án C.
Câu 12. Cho hình lăng trụ đứng tam giác như hình bên. Mặt đáy của lăng trụ đứng là:
A. ABC. |
B. ABPM. |
C. ACMN. |
D. BCPN. |
Phương pháp
Quan sát hình vẽ.
Lời giải
Hai mặt đáy của hình lăng trụ đứng tam giác trên là ABC và MNP.
Đáp án A.
Phần tự luận.
Bài 1. (0,75 điểm). Trong các số 2,5; 0; \( - \frac{1}{3}\), \(1\frac{1}{2}\) số nào là số hữu tỉ dương? Vì sao?
Phương pháp
So sánh các số hữu tỉ với 0.
Lời giải
Vì \(2,5 = \frac{{25}}{{10}} = \frac{5}{2} > 0\); \(1\frac{1}{2} = \frac{3}{2} > 0\) nên 2,5; \(1\frac{1}{2}\) là các số hữu tỉ dương.
Bài 2. (1,5 điểm). Thực hiện phép tính:
a. \(\frac{2}{3}:\frac{{ - 6}}{9} + \frac{1}{7}\); |
b. \(\frac{{ - 3}}{{11}} \cdot \frac{5}{9} + \frac{4}{9} \cdot \frac{{ - 3}}{{11}}\); |
c. \(\frac{{{9^5}{{.8}^2}}}{{{{27}^3}.16}}\); |
Phương pháp
Dựa vào quy tắc tính với số hữu tỉ, lũy thừa.
Lời giải
a. \(\frac{2}{3}:\frac{{ - 6}}{9} + \frac{1}{7}\)\( = \frac{2}{3}.\frac{{ - 9}}{6} + \frac{1}{7}\)\( = - 1 + \frac{1}{7}\)\( = \frac{{ - 6}}{7}\).
b. \(\frac{{ - 3}}{{11}} \cdot \frac{5}{9} + \frac{4}{9} \cdot \frac{{ - 3}}{{11}}\)\( = \frac{{ - 3}}{{11}} \cdot \left( {\frac{5}{9} + \frac{4}{9}} \right)\)\( = \frac{{ - 3}}{{11}}.1\)\( = \frac{{ - 3}}{{11}}\).
c. \(\frac{{{9^5}{{.8}^2}}}{{{{27}^3}.16}}\)\( = \frac{{{{\left( {{3^2}} \right)}^5}.{{\left( {{2^3}} \right)}^2}}}{{{{\left( {{3^3}} \right)}^3}{{.2}^4}}}\)\( = \frac{{{3^{10}}{{.2}^6}}}{{{3^9}{{.2}^4}}}\)\( = {3.2^2} = 3.4 = 12\).
Bài 3. (1,5 điểm). Tìm số hữu tỉ \(x\), biết:
a. \(25\% - x = 1\frac{5}{6}\); |
b. \(\frac{{ - 5}}{4} + \frac{2}{3}:x = 0,75\). |
Phương pháp
Dựa vào quy tắc tính để tìm x.
Lời giải
a. \(25\% - x = 1\frac{5}{6}\) \(\frac{1}{4} - x = \frac{{11}}{6}\) \(x = \frac{1}{4} - \frac{{11}}{6}\) \(x = \frac{{ - 19}}{{12}}\) Vậy \(x = \frac{{ - 19}}{{12}}\).
|
b. \(\frac{{ - 5}}{4} + \frac{2}{3}:x = 0,75\). \(\frac{{ - 5}}{4} + \frac{2}{3}:x = \frac{3}{4}\) \(\frac{2}{3}:x = 2\) \(x = \frac{2}{3}:2\) \(x = \frac{1}{3}\) Vậy \(x = \frac{1}{3}\).
|
Bài 4. (1,0 điểm). Cho hình hộp chữ nhật ABCD.MNHQ như hình vẽ, có AB = 5cm, BC = 7cm, AM = 3cm Tính diện tích xung quanh và thể tích của hình hộp chữ nhật này.
Phương pháp
Dựa vào công thức tính diện tích xung quanh và thể tích của hình hộp chữ nhật.
Lời giải
Diện tích xung quanh của hình hộp chữ nhật là:
\({S_{xq}} = 2.\left( {5 + 7} \right).3 = 72\,\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).
Thể tích của hình hộp chữ nhật là:
\(V = 5.7.3 = 105\left( {{\rm{c}}{{\rm{m}}^3}} \right)\)
Vậy diện tích xung quanh của hình hộp chữ nhật là 72cm2.
thể tích của hình hộp chữ nhật là 105cm3.
Bài 5. (0,75 điểm).
Thùng đựng của một máy cắt cỏ có dạng lăng trụ đứng tam giác. Hãy tính thể tích của thùng.
Phương pháp
Dựa vào công thức tính thể tích hình lăng trụ đứng tam giác.
Lời giải
Diện tích đáy hình lăng trụ đứng tam giác là:
\({S_d} = \frac{{90.60}}{2} = 2700\,\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).
Thể tích hình lăng trụ đứng tam giác là:
\(V = 2700.70 = 189000\,\left( {{\rm{c}}{{\rm{m}}^3}} \right)\)
Vậy thể tích thùng đựng máy cắt cỏ là 189 00 cm3.
Bài 6. (0,5 điểm). Một căn phòng hình hộp chữ nhật có chiều dài \(4,5m\), chiều rộng \(4m\) , chiều cao \(3m\). Người ta muốn lăn sơn trần nhà và bốn bức tường. Biết rằng tổng diện tích các cửa là \(11\,{m^2}\). Tính diện tích cần lăn sơn ?
Phương pháp
Tính diện tích xung quanh của căn phòng.
Diện tích cần lăn sơn = diện tích xung quanh của căn phòng – diện tích các cửa.
Lời giải
Diện tích xung quanh căn phòng và diện tích trần nhà:
\(S = 2(4,5 + 4).3 + 4,5.4 = 69\left( {{{\rm{m}}^2}} \right)\).
Diện tích cần lăn sơn:
69 – 11 = 58 (m2)
Bài 7. (1,0 điểm). Một cửa hàng bán quần áo có chương trình khuyến mãi như sau: Khách hàng có thẻ thành viên sẽ được giảm 15% tổng số tiền của hóa đơn. Bạn Bình có thẻ thành viên, bạn mua hai chiếc áo sơ mi, mỗi áo đều có giá 200 000 đồng và một quần Jeans với giá 350 000 đồng. Bạn đưa cho người thu ngân 1 triệu đồng. Hỏi bạn Bình được trả lại bao nhiêu tiền?
Phương pháp
Tính số tiền Bạn bình phải trả.
Số tiền Bình được trả lại = số tiền Bình đưa – số tiền Bình phải trả.
Lời giải
Số tiền bạn Bình mua hai chiếc áo sơ mi và một quần Jeans sau khi giảm giá:
\((100\% - 15\% ).(2.200000 + 350000) = 637500\)(đồng).
Số tiền Bình được trả lại:
1000000 – 637500 = 362500 (đồng).
Search google: "từ khóa + timdapan.com" Ví dụ: "Đề thi giữa kì 1 Toán 7 - Đề số 6 - Chân trời sáng tạo timdapan.com"