Câu 6 trang 35 SGK Vật Lý 12 Nâng cao

Một vật dao động điều hoà với biên độ A= 4cm và chu kì T = 2s.


Đề bài

Một vật dao động điều hoà với biên độ \(A= 4\) cm và chu kì \(T = 2\) s.

a) Viết phương trình dao động của vật, chọn gốc thời gian là lúc nó đi qua vị trí cân bằng theo chiều dương.

b) Tính li độ của vật tại thời điểm \(t = 5,5\) s.

Lời giải chi tiết

a) Vật dao động điều hoà với \(A = 4cm\), \(T = 2\) (s)

Tần số góc của dao động \(\omega = {{2\pi } \over T} = {{2\pi } \over 2} = \pi \,(rad/s)\)

Chọn gốc  thời gian lúc vật qua vị trí cân bằng theo chiều dương

\( \Rightarrow \) Khi \(t = 0\) : \(\left\{ \matrix{{x_0} = A\cos \varphi = 0(1) \hfill \cr \hfill \cr {v_0} = - A\omega \sin \varphi > 0(2) \hfill \cr} \right.\)         

 \(\eqalign{& (1) \Rightarrow \cos \varphi = 0 \Rightarrow \left[ \matrix{\varphi = {\pi \over 2} \hfill \cr \varphi = - {\pi \over 2} \hfill \cr} \right. \cr & \cr} \)

\((2) \Rightarrow {v_0} > 0 \Leftrightarrow \sin \varphi < 0 \Rightarrow \) Chọn \(\varphi = - {\pi \over 2}.\)

Vậy : \(x = 4\cos \left( {\pi t - {\pi \over 2}} \right)(cm).\)

b) Khi \(t = 5,5\) (s), ta có

\(\eqalign{& x = 4\cos \left( {\pi .5,5 - {\pi \over 2}} \right) \cr & x = 4\cos 5\pi = - 4(cm). \cr} \)