Câu 58 trang 178 SGK Đại số và Giải tích 11 Nâng cao
Tìm giới hạn của dãy số (un) xác định bởi
Đề bài
Tìm giới hạn của dãy số (un) xác định bởi
\({u_n} = {1 \over {1.2}} + {1 \over {2.3}} + ... + {1 \over {n\left( {n + 1} \right)}}.\)
Hướng dẫn : Với mỗi số nguyên dương k, ta có
\({1 \over {k\left( {k + 1} \right)}} = {1 \over k} - {1 \over {k + 1}}\)
Phương pháp giải - Xem chi tiết
Với mỗi số nguyên dương k, ta có
\({1 \over {k\left( {k + 1} \right)}} = {1 \over k} - {1 \over {k + 1}}\)
Lời giải chi tiết
\({u_n} = \left( {1 - {1 \over 2}} \right) + \left( {{1 \over 2} - {1 \over 3}} \right) + ... \)
\(+ \left( {{1 \over {n - 1}}}-{1 \over n} \right) + \left( {{1 \over n} - {1 \over {n + 1}}} \right) \) \(= 1 - {1 \over {n + 1}}\)
Do đó \(\lim {u_n} = \lim \left( {1 - {1 \over {n + 1}}} \right) = 1\)
Mẹo Tìm đáp án nhanh nhất
Search google: "từ khóa + timdapan.com" Ví dụ: "Câu 58 trang 178 SGK Đại số và Giải tích 11 Nâng cao timdapan.com"
Search google: "từ khóa + timdapan.com" Ví dụ: "Câu 58 trang 178 SGK Đại số và Giải tích 11 Nâng cao timdapan.com"