Câu 52 trang 221 SGK Đại số và Giải tích 11 Nâng cao

Tính vi phân của hàm số


Đề bài

Tính vi phân của hàm số \(y = {1 \over {{{\left( {1 + \tan x} \right)}^2}}}\) tại điểm \(x = {\pi  \over 6}\) ứng với \(\Delta x = {\pi  \over {360}}\) (tính chính xác đến hàng phần vạn).

Lời giải chi tiết

Ta có: \(df\left( x \right) = {{ - 2\left( {1 + \tan x} \right){1 \over {{{\cos }^2}x}}} \over {{{\left( {1 + \tan x} \right)}^4}}}.\Delta x = {{ - 2\Delta x} \over {{{\cos }^2}x{{\left( {1 + \tan x} \right)}^3}}}\)

Suy ra: \(df\left( {{\pi  \over 6}} \right) = {{ - 2.{\pi  \over {360}}} \over {{{\cos }^2}{\pi  \over 6}{{\left( {1 + \tan {\pi  \over 6}} \right)}^3}}} = {{ - \pi } \over {180.{3 \over 4}{{\left( {1 + {1 \over {\sqrt 3 }}} \right)}^3}}}\)

                            \(\approx  - 0,0059\)