Câu 37 trang 163 SGK Đại số và Giải tích 11 Nâng cao
Tính
LG a
\(\mathop {\lim }\limits_{x \to 1} \left[ {{2 \over {{{\left( {x - 1} \right)}^2}}}.{{2x + 1} \over {2x - 3}}} \right]\)
Giải chi tiết:
Ta có: \(\mathop {\lim }\limits_{x \to 1} {2 \over {{{\left( {x - 1} \right)}^2}}} = + \infty \,\text{ và }\,\mathop {\lim }\limits_{x \to 1} {{2x + 1} \over {2x - 3}} = {3 \over { - 1}} = - 3 < 0\)
Do đó \(\mathop {\lim }\limits_{x \to 1} \left[ {{2 \over {{{\left( {x - 1} \right)}^2}}}.{{2x + 1} \over {2x - 3}}} \right] = - \infty \)
LG b
\(\mathop {\lim }\limits_{x \to 1} {5 \over {\left( {x - 1} \right)\left( {{x^2} - 3x + 2} \right)}}\)
Giải chi tiết:
\(\eqalign{
& {5 \over {\left( {x - 1} \right)\left( {{x^2} - 3x + 2} \right)}} = {1 \over {{{\left( {x - 1} \right)}^2}}}.{5 \over {x - 2}} \cr
& \text{vì}\,\mathop {\lim }\limits_{x \to 1} {1 \over {{{\left( {x - 1} \right)}^2}}} = + \infty \,\text{ và }\,\mathop {\lim }\limits_{x \to 1} {5 \over {x - 2}} = - 5 < 0 \cr
& \text{ nên }\,\mathop {\lim }\limits_{x \to 1} {5 \over {\left( {x - 1} \right)\left( {{x^2} - 3x + 2} \right)}} = - \infty \cr} \)
Search google: "từ khóa + timdapan.com" Ví dụ: "Câu 37 trang 163 SGK Đại số và Giải tích 11 Nâng cao timdapan.com"