Câu 1 trang 192 SGK Đại số và Giải tích 11 Nâng cao

Tìm số gia của hàm số tại điểm x0 = 1 ứng với số gia ∆x, biết


Tìm số gia của hàm số \(y = {x^2} - 1\) tại điểm x0 = 1 ứng với số gia ∆x, biết

LG a

 ∆x = 1

Phương pháp giải:

Sử dụng công thức \(\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)\).

Thay \(x_0,\Delta x\) vào công thức trên suy ra \(\Delta y\).

Lời giải chi tiết:

Đặt \(f(x) = {x^2} - 1\)

Ta có: \(\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)\)

\(= f\left( 1+1 \right) - f\left( 1 \right) \) \(= f\left( 2 \right) - f\left( 1 \right) = 3 - 0 = 3\)


LG b

∆x = -0,1.

Lời giải chi tiết:

\(\Delta y = f\left( {{x_0} + \Delta x} \right) - f\left( {{x_0}} \right)\)

\(=f(1-0,1)-f(1)\)

\(= f\left( {0,9} \right) - f\left( 1 \right) \) \(= ({\left( {0,9} \right)^2} - 1) -(1^2-1)=  - 0,19\)



Từ khóa phổ biến