Bài 8 trang 10 SGK Toán 8 tập 2
Giải bài 8 trang 10 SGK Toán 8 tập 2. Giải các phương trình:
Đề bài
Giải các phương trình:
a) \(4x - 20 = 0\);
b) \(2x + x + 12 = 0\);
c) \(x - 5 = 3 - x\);
d) \(7 - 3x = 9 - x\).
Phương pháp giải - Xem chi tiết
a) Phương trình \(ax+b=0\) (với \(a\ne0\)) được giải như sau:
\(ax + b = 0 \Leftrightarrow ax = -b \Leftrightarrow x = \dfrac{-b}{a}\)
Vậy phương trình có một nghiệm duy nhất là \(x= \dfrac{-b}{a} \)
b, c, d)
+) Quy tắc chuyển vế
Trong một phương trình ta có thể chuyển một hạng tử từ vế này sang vế kia và đổi dấu hạng tử đó.
+) Quy tắc nhân với một số
Trong một phương trình, ta có thể nhân (hoặc chia) cả hai vế phương trình với cùng một số khác \(0\).
Lời giải chi tiết
a) \(4x - 20 = 0 \)
\(\Leftrightarrow 4x = 20 \)
\( \Leftrightarrow x = \dfrac{20} {4}\)
\(\Leftrightarrow x = 5\)
Vậy phương trình có nghiệm duy nhất \(x = 5\).
b) \(2x + x + 12 = 0\)
\( \Leftrightarrow 3x + 12 = 0\)
\( \Leftrightarrow 3x = -12\)
\( \Leftrightarrow x = \dfrac{{ - 12}}{3}\)
\( \Leftrightarrow x = - 4\)
Vậy phương trình đã cho có nghiệm duy nhất \(x = - 4\)
c) \(x - 5 = 3 - x\)
\( \Leftrightarrow x + x = 3+5\)
\( \Leftrightarrow 2x = 8 \)
\( \Leftrightarrow x = \dfrac{8}{2}\)
\( \Leftrightarrow x = 4\)
Vậy phương trình có nghiệm duy nhất \(x = 4\)
d) \(7 - 3x = 9 - x\)
\( \Leftrightarrow -3x+x = 9 -7\)
\( \Leftrightarrow -2x = 2\)
\( \Leftrightarrow x = \dfrac{2}{{ - 2}}\)
\( \Leftrightarrow x = -1\)
Vậy phương trình có nghiệm duy nhất \(x = -1\).
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 8 trang 10 SGK Toán 8 tập 2 timdapan.com"