Bài 45 trang 44 SGK giải tích 12 nâng cao

a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số: b) Tùy theo các giá trị của m, hãy biện luận số nghiệm của phương trình:


LG a

Khảo sát sự biến thiên và vẽ đồ thị của hàm số: \(y = {x^3} - 3{x^2} + 1\).

Giải chi tiết:

TXĐ: \(D =\mathbb R\)

\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } y = + \infty ;\,\mathop {\lim }\limits_{x \to - \infty } y = - \infty \cr 
& y' = 3{x^2} - 6x = 3x\left( {x - 2} \right);\,\,y' = 0 \Leftrightarrow \left[ \matrix{
x = 0;\,\,\,\,y\left( 0 \right) = 1 \hfill \cr 
x = 2;\,\,\,\,y\left( 2 \right) = - 3 \hfill \cr} \right. \cr} \)

Bảng biến thiên:

Hàm số đồng biến trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {2; + \infty } \right)\); nghịch biến trên khoảng \((0;2)\).

Hàm số đạt cực đại tại điểm \(x = 0\), giá trị cực đại \(y(0) = 1\); hàm số đat cực tiểu tại điểm \(x = 2\), giá trị cực tiểu \(y(2) = -3\).

\(y'' = 6x - 6;\,y'' = 0 \Leftrightarrow x = 1;\,y\left( 1 \right) =  - 1\)

Xét dấu \(y”\)

   

Điểm uốn của đồ thị \(I(1;-1)\)    

Điểm đặc biệt \(x =  - 1 \Rightarrow y =  - 3\)

Đồ thị: đồ thị nhận điểm \(I(1;-1)\) làm tâm đối xứng.


LG b

Tùy theo các giá trị của \(m\), hãy biện luận số nghiệm của phương trình: \({x^3} - 3{x^2} + m + 2 = 0\)

Giải chi tiết:

Ta có: \({x^3} - 3{x^2} + m + 2 = 0 \Leftrightarrow {x^3} - 3{x^2} + 1 =  - m - 1\)

Số nghiệm của phương trình trên bằng số giao điểm của đồ thị hàm số \(y = {x^3} - 3{x^2} + 1\) và 

đường thẳng \(y = - m -1\). Dựa vào đồ thị ta có:

- Nếu \( - m - 1<-3\Rightarrow m>2\) thì phương trình có \(1\) nghiệm.

- Nếu \(-m-1=-3\Rightarrow m=2\) thì phương trình có \(2\) nghiệm.

- Nếu \(-3< -m-1<1\Rightarrow -2<m<2\) thì phương trình có \(3\) nghiệm.

- Nếu \(-m-1=1\Rightarrow m=-2\) thì phương trình có \(2\) nghiệm

- Nếu \(-m-1>1\Rightarrow m<-2\) thì phương trình có \(1\) nghiệm.