Bài 13 trang 225 Sách bài tập Hình học lớp 12 Nâng cao

Trong không gian Oxyz cho bốn điểm


Trong không gian Oxyz cho bốn điểm A(1 ; 0 ; 2), B(1 ; 1 ; 0), C(0 ; 0 ; 1) và D( 1 ; 1 ; 1).

LG 1

Chứng minh A, B,C, D là bốn đỉnh của một khối tứ diện.

Lời giải chi tiết:

\(\overrightarrow {CA} {\rm{ }} = {\rm{ }}\left( {{\rm{ }};{\rm{ }}0{\rm{ }};{\rm{ }}1} \right),{\rm{ }}\overrightarrow {CB} {\rm{ }} = \left( {1{\rm{ }};{\rm{ }}1{\rm{ }}; - 1} \right),{\rm{ }}\overrightarrow {CD} {\rm{ }} = \left( {1{\rm{ }};{\rm{ }}1{\rm{ }};{\rm{ }}0} \right)\)

\( =  > \left[ {\overrightarrow {CA} ,\overrightarrow {CB} } \right] = ( - 1;2;1)\)

\(\Rightarrow \left[ {\overrightarrow {CA} ,\overrightarrow {CB} } \right].\overrightarrow {CD = } 1 \ne 0\)

=> ABCD không đồng phẳng hay ABCD là bốn đỉnh của một khối tứ diện.


LG 2

Tính thể tích khối tứ diện ABCD.

Lời giải chi tiết:

\({V_{ABCD}} = {1 \over 6}\left| {\left[ {\overrightarrow {CA} ,\overrightarrow {CB} } \right].\overrightarrow {CD} } \right| = {1 \over 6}.\)


LG 3

Viết phương trình đường cao của tứ diện ABCD hạ từ đỉnh D.

Lời giải chi tiết:

Vectơ chỉ phương của đường cao tứ diện hạ từ đỉnh D có thế lấy là vectơ pháp tuyến của mp(ABC) hay vectơ \(\left[ {\overrightarrow {CA} ,\overrightarrow {CB} } \right]{\rm{ }} = {\rm{ }}\left( { - 1{\rm{ }};{\rm{ }}2{\rm{ }};{\rm{ }}1} \right).\)

Vậy đường cao đó có phương trình chính tắc là \({{x - 1} \over { - 1}} = {{y - 1} \over 2} = {{z - 1} \over 1}.\)


LG 4

Viết phương trình mặt cầu (S) ngoại tiếp tứ diện ABCD.

Lời giải chi tiết:

Phương trình mặt cầu (S) ngoại tiếp tứ diện ABCD có dạng

         \({x^2} + {\rm{ }}{y^2} + {\rm{ }}{z^2} - {\rm{ }}2ax{\rm{ }} - {\rm{ }}2by{\rm{ }} - {\rm{ }}2cz{\rm{ }} + {\rm{ }}d{\rm{ }} = {\rm{ }}0.\)

Do A, B, C, D thuộc (S) nên ta có hệ phương trình

          \(\left\{ {\matrix{   {2a{\rm{ }} + {\rm{ }}4c - d - 5{\rm{ }} = {\rm{ }}0} \hfill  \cr   {2a{\rm{ }} + {\rm{ }}2b - d - 2{\rm{ }} = {\rm{ }}0} \hfill  \cr   {2c - d - {\rm{ 1}} = {\rm{ }}0} \hfill  \cr   {2a{\rm{ }} + {\rm{ }}2b{\rm{ }} + {\rm{ }}2c - d - 3{\rm{ }} = {\rm{ }}0.} \hfill  \cr  } } \right.\)

Giải hệ ta có : \(a = {3 \over 2},b =  - {1 \over 2},c = {1 \over 2},d = 0.\)

Vậy phương trình mặt cầu (S) là

\({x^2} + {\rm{ }}{y^2} + {\rm{ }}{z^2} - 3x{\rm{ }} + {\rm{ }}y - z{\rm{ }} = {\rm{ }}0.\)

Suy ra (S) có tâm là \(I\left( {{3 \over 2}; - {1 \over 2};{1 \over 2}} \right)\) và bán kính \(R{\rm{ }} = {{\sqrt {11} } \over 2}.\)


LG 5

Viết phương trình mặt phẳng tiếp xúc với mặt cầu (S) tại đỉnh A.

Lời giải chi tiết:

Mặt phẳng tiếp xúc với mặt cầu (S) tại A có vectơ pháp tuyến là

\(\overrightarrow {AI}  = \left( {{1 \over 2}; - {1 \over 2}; - {3 \over 2}} \right) = {1 \over 2}\left( {1; - 1; - 3} \right).\)

Vậy phương trình mặt phẳng cần tìm là

\(\matrix{   {\left( {x{\rm{ }} - {\rm{ }}1} \right){\rm{ }} - {\rm{ }}\left( {y{\rm{ }} - {\rm{ }}0} \right){\rm{ }} - {\rm{ }}3\left( {z{\rm{ }} - {\rm{ }}2} \right){\rm{ }} = {\rm{ }}0} \hfill  \cr   { <  =  > x - y - 3z{\rm{ }} + {\rm{ }}5{\rm{ }} = {\rm{ }}0.} \hfill  \cr  } \)


LG 6

Xác định toạ độ của điểm A' đối xứng với điểm A qua mp(BCD).

Lời giải chi tiết:

Ta viết phương trình mp(BCD), đó là mặt phẳng đi qua \(C\left( {0{\rm{ }};{\rm{ }}0{\rm{ }};{\rm{ }}1} \right)\) và các vectơ pháp tuyến \(\overrightarrow n {\rm{  = }}\left[ {\overrightarrow {CB} ,\overrightarrow {CD} } \right] = {\rm{ }}\left( {1{\rm{ }}; - {\rm{ }}1{\rm{ }};{\rm{ }}0} \right).\)

Vậy mp(BCD) có phương trình : \(x - y{\rm{ }} = 0.\)

Đường thẳng qua A và vuông góc với mp(BCD) có phương trình là

            \(\left\{ \matrix{  x = 1 + t \hfill \cr  y =  - t \hfill \cr  z = 2. \hfill \cr}  \right.\)

Gọi K là giao điểm của đường thẳng này với mp(BCD), toạ độ của K là nghiệm của hệ

           \(\left\{ \matrix{  x = 1 + t \hfill \cr  y =  - t \hfill \cr  z = 2 \hfill \cr  x - y = 0 \hfill \cr}  \right. \Rightarrow K = \left( {{1 \over 2};{1 \over 2};2} \right).\)

Vì A ' là điểm đối xứng với A qua mp(BCD) nên ta có

            \(\left\{ \matrix{  {x_{A'}} + {x_A} = 2{x_K} \hfill \cr  {y_{A'}} + {y_A} = 2{y_K} \hfill \cr  {z_{A'}} + {z_A} = 2{z_K} \hfill \cr}  \right. \Rightarrow A' = \left( {0;1;2} \right).\)


LG 7

Tính khoảng cách giữa hai đường thẳng AC và BD.

Lời giải chi tiết:

Dễ dàng nhận thấy BD song song với mp(xOz) mà mp(xOz) chứa AC nên \(d\left( {AC,BD} \right){\rm{ }} = {\rm{ }}d\left( {B,\left( {xOz} \right)} \right){\rm{ }} = 1.\)



Từ khóa phổ biến