Bài 23 trang 24 Sách giáo khoa (SGK) Hình học 10 Nâng cao

Gọi M và N lần lượt là trung điểm các đoạn thẳng AB và CD. Chứng minh rằng


Đề bài

Gọi \(M\) và \(N\) lần lượt là trung điểm các đoạn thẳng \(AB\) và \(CD\).  Chứng minh rằng

\(2\overrightarrow {MN}  = \overrightarrow {AC}  + \overrightarrow {BD}  = \overrightarrow {AD}  + \overrightarrow {BC} .\)

Lời giải chi tiết

Theo quy tắc ba điểm, ta có

\(\eqalign{
& \overrightarrow {AC} + \overrightarrow {BD} = \left( {\overrightarrow {AM} + \overrightarrow {MN} + \overrightarrow {NC} } \right) + \left( {\overrightarrow {BM} + \overrightarrow {MN} + \overrightarrow {ND} } \right) \cr 
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 2\overrightarrow {MN} + \left( {\overrightarrow {AM} + \overrightarrow {BM} } \right) + \left( {\overrightarrow {NC} + \overrightarrow {ND} } \right) \cr 
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 2\overrightarrow {MN} + \overrightarrow 0 + \overrightarrow 0 = 2\overrightarrow {MN} \cr 
& \overrightarrow {AD} + \overrightarrow {BC} = \left( {\overrightarrow {AM} + \overrightarrow {MN} + \overrightarrow {ND} } \right) + \left( {\overrightarrow {BM} + \overrightarrow {MN} + \overrightarrow {NC} } \right) \cr 
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 2\overrightarrow {MN} + \left( {\overrightarrow {AM} + \overrightarrow {BM} } \right) + \left( {\overrightarrow {NC} + \overrightarrow {ND} } \right) \cr 
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 2\overrightarrow {MN} + \overrightarrow 0 + \overrightarrow 0 = 2\overrightarrow {MN} \cr} \)

Vậy \(2\overrightarrow {MN}  = \overrightarrow {AC}  + \overrightarrow {BD}  = \overrightarrow {AD}  + \overrightarrow {BC} .\)