Bài 23 trang 24 Sách giáo khoa (SGK) Hình học 10 Nâng cao
Gọi M và N lần lượt là trung điểm các đoạn thẳng AB và CD. Chứng minh rằng
Đề bài
Gọi \(M\) và \(N\) lần lượt là trung điểm các đoạn thẳng \(AB\) và \(CD\). Chứng minh rằng
\(2\overrightarrow {MN} = \overrightarrow {AC} + \overrightarrow {BD} = \overrightarrow {AD} + \overrightarrow {BC} .\)
Lời giải chi tiết
Theo quy tắc ba điểm, ta có
\(\eqalign{
& \overrightarrow {AC} + \overrightarrow {BD} = \left( {\overrightarrow {AM} + \overrightarrow {MN} + \overrightarrow {NC} } \right) + \left( {\overrightarrow {BM} + \overrightarrow {MN} + \overrightarrow {ND} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 2\overrightarrow {MN} + \left( {\overrightarrow {AM} + \overrightarrow {BM} } \right) + \left( {\overrightarrow {NC} + \overrightarrow {ND} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 2\overrightarrow {MN} + \overrightarrow 0 + \overrightarrow 0 = 2\overrightarrow {MN} \cr
& \overrightarrow {AD} + \overrightarrow {BC} = \left( {\overrightarrow {AM} + \overrightarrow {MN} + \overrightarrow {ND} } \right) + \left( {\overrightarrow {BM} + \overrightarrow {MN} + \overrightarrow {NC} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 2\overrightarrow {MN} + \left( {\overrightarrow {AM} + \overrightarrow {BM} } \right) + \left( {\overrightarrow {NC} + \overrightarrow {ND} } \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 2\overrightarrow {MN} + \overrightarrow 0 + \overrightarrow 0 = 2\overrightarrow {MN} \cr} \)
Vậy \(2\overrightarrow {MN} = \overrightarrow {AC} + \overrightarrow {BD} = \overrightarrow {AD} + \overrightarrow {BC} .\)
Search google: "từ khóa + timdapan.com" Ví dụ: "Bài 23 trang 24 Sách giáo khoa (SGK) Hình học 10 Nâng cao timdapan.com"