Bài 15 trang 17 Sách giáo khoa (SGK) Hình học 10 Nâng cao

Chứng minh các mệnh đề sau đây


Chứng minh các mệnh đề sau đây

LG a

Nếu \(\overrightarrow a  + \overrightarrow b  = \overrightarrow c \) thì \(\overrightarrow a  = \overrightarrow c  - \overrightarrow b ,\overrightarrow b  = \overrightarrow c  - \overrightarrow a \)

Lời giải chi tiết:

Cộng hai vế cho vectơ đối của vectơ \(\overrightarrow b \) ta có

\(\overrightarrow a  + \overrightarrow b  + \left( { - \overrightarrow b } \right) = \overrightarrow c  + \left( { - \overrightarrow b } \right)\)

Mà \( \overrightarrow b  + \left( { - \overrightarrow b } \right) = \overrightarrow 0\); \(\overrightarrow c  + \left( { - \overrightarrow b } \right) =\overrightarrow c  - \overrightarrow b  \)

\( \Rightarrow \overrightarrow a  = \overrightarrow c  - \overrightarrow b \)

Tương tự: Cộng hai vế cho vectơ đối của vectơ \(\overrightarrow a \) ta có

 \(\overrightarrow a  + \overrightarrow b  + \left( { - \overrightarrow a } \right) = \overrightarrow c  + \left( { - \overrightarrow a } \right)\) \( \Rightarrow \overrightarrow b  = \overrightarrow c  - \overrightarrow a \)


LG b

\(\overrightarrow a  - (\overrightarrow b  + \overrightarrow c ) = \overrightarrow a  - \overrightarrow b  - \overrightarrow c \)

Phương pháp giải:

Sử dụng định nghĩa: Hiệu của hai véc tơ \(\overrightarrow a \) và \(\overrightarrow b \) là tổng của véc tơ \(\overrightarrow a \) và véc tơ đối của \(\overrightarrow b \).

- Ta cần tính hiệu của \(\overrightarrow a \) và \((\overrightarrow b + \overrightarrow c  )\) nên phải đi tìm véc tơ đối của \((\overrightarrow b + \overrightarrow c  )\).

- Thực hiện cộng véc tơ \(\overrightarrow a\) với véc tơ vừa tìm được suy ra đpcm.

Lời giải chi tiết:

Ta có: \(\overrightarrow b  + \overrightarrow c  + \left( { - \overrightarrow b } \right) + \left( { - \overrightarrow c } \right) = \overrightarrow 0 \)

hay \( (\overrightarrow b  + \overrightarrow c)  + \left[ \left( { - \overrightarrow b } \right) + \left( { - \overrightarrow c } \right) \right] = \overrightarrow 0 \)

Suy ra \(-(\overrightarrow b  + \overrightarrow c)  = \left( { - \overrightarrow b } \right) + \left( { - \overrightarrow c } \right) \)

Vậy véc tơ đối của \(\overrightarrow b  + \overrightarrow c \) là \(\left( { - \overrightarrow b } \right) + \left( { - \overrightarrow c } \right)\) 

Do đó

\(\overrightarrow a  - \left( {\overrightarrow b  + \overrightarrow c } \right) \)  \(= \overrightarrow a  + \left[ \left( { - \overrightarrow b } \right) + \left( { - \overrightarrow c } \right) \right] \)\(= \overrightarrow a  + \left( { - \overrightarrow b } \right) + \left( { - \overrightarrow c } \right) \) \(= \overrightarrow a  - \overrightarrow b  - \overrightarrow c \)


LG c

\(\overrightarrow a  - (\overrightarrow b  - \overrightarrow c ) = \overrightarrow a  - \overrightarrow b  + \overrightarrow c \)

Phương pháp giải:

- Tìm véc tơ đối của \(\overrightarrow b  - \overrightarrow c \).

- Thực hiện cộng véc tơ \(\overrightarrow a \) với véc tơ vừa tìm được suy ra đpcm.

Lời giải chi tiết:

Ta có: 

\( \left( \overrightarrow b  - \overrightarrow c \right) +\left[ \left( { - \overrightarrow b } \right) + \overrightarrow c \right] = \overrightarrow b  - \overrightarrow c \) \(+ \left( { - \overrightarrow b } \right) + \overrightarrow c = \overrightarrow b  + \left( { - \overrightarrow b } \right) + \left( { - \overrightarrow c } \right) + \overrightarrow c  = \overrightarrow 0 \)

Do đó \(\overrightarrow b  - \overrightarrow c \) là vecto đối của \(\left( { - \overrightarrow b } \right) + \overrightarrow c \)

hay \(- \left ( \overrightarrow b  - \overrightarrow c \right )\)  = \(\left( { - \overrightarrow b } \right) + \overrightarrow c \)

vây \(\overrightarrow a  - \left( {\overrightarrow b  - \overrightarrow c } \right)\) \( = \overrightarrow a  + \left( { - \overrightarrow b } \right) + \overrightarrow c \) \( = \overrightarrow a  - \overrightarrow b  + \overrightarrow c \)



Từ khóa phổ biến