Bài 6 trang 48 Tài liệu dạy – học Toán 8 tập 1

Giải bài tập Phân tích đa thức thành nhân tử:


Đề bài

Phân tích đa thức thành nhân tử:

a) \({x^3} - 2{x^2} + x - x{y^2}\) ;

b) \({x^2} - 7x + 12\) ;

c) \({x^2} - x - 6\) ;

d) \(2{x^2} + x - 6\) ;

e) \({x^3} - 2x - 4\) .

Lời giải chi tiết

\(\eqalign{  & a)\,\,{x^3} - 2{x^2} + x - x{y^2} = x\left( {{x^2} - 2x + 1 - {y^2}} \right)  \cr  & \,\,\,\,\, = x\left[ {{{\left( {x - 1} \right)}^2} - {y^2}} \right] = x\left( {x - 1 - y} \right)\left( {x - 1 + y} \right)  \cr  & b)\,\,{x^2} - 7x + 12 = {x^2} - 4x - 3x + 12  \cr  & \,\,\,\,\, = x\left( {x - 4} \right) - 3\left( {x - 4} \right) = \left( {x - 4} \right)\left( {x - 3} \right)  \cr  & c)\,\,\,{x^2} - x - 6 = {x^2} - 3x + 2x - 6  \cr  & \,\,\,\,\, = x\left( {x - 3} \right) + 2\left( {x - 3} \right) = \left( {x - 3} \right)\left( {x + 2} \right)  \cr  & d)\,\,2{x^2} + x - 6 = 2{x^2} + 4x - 3x - 6  \cr  & \,\,\,\,\, = 2x\left( {x + 2} \right) - 3\left( {x + 2} \right) = \left( {x + 2} \right)\left( {2x - 3} \right)  \cr  & e)\,\,{x^3} - 2x - 4 = {x^3} - 2x - 8 + 4  \cr  & \,\,\,\,\, = \left( {{x^3} - 8} \right) - \left( {2x - 4} \right) = \left( {{x^3} - {2^3}} \right) - 2\left( {x - 2} \right)  \cr & \,\,\,\,\, = \left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right) - 2\left( {x - 2} \right)  \cr  & \,\,\,\,\, = \left( {x - 2} \right)\left( {{x^2} + 2x + 4 - 2} \right)  \cr  & \,\,\,\,\, = \left( {x - 2} \right)\left( {{x^2} + 2x + 2} \right) \cr} \)



Từ khóa phổ biến

bài 6