Bài 4 trang 169 SGK Đại số và Giải tích 11

Giải bài 4 trang 169 SGK Đại số và Giải tích 11. Tìm đạo hàm của các hàm số sau:


Đề bài

Tìm đạo hàm của các hàm số sau:

\(\begin{array}{l}
a)\,\,y = \left( {9 - 2x} \right)\left( {2{x^3} - 9{x^2} + 1} \right)\\
b)\,\,y = \left( {6\sqrt x - \dfrac{1}{{{x^2}}}} \right)\left( {7x - 3} \right)\\
c)\,\,y = \left( {x - 2} \right)\sqrt {{x^2} + 1} \\
d)\,y = {\tan ^2}x - {\cot}{x^2}\\
e)\,\,y = \cos \dfrac{x}{{1 + x}}
\end{array}\)

Phương pháp giải - Xem chi tiết

Sử dụng các quy tắc tính đạo hàm của tích, thương, quy tắc tính đạo hàm hàm số hợp và bảng đạo hàm cơ bản.

Lời giải chi tiết

\(\begin{array}{l}
a)\,\,y = \left( {9 - 2x} \right)\left( {2{x^3} - 9{x^2} + 1} \right)\\y' = \left( {9 - 2x} \right)'\left( {2{x^3} - 9{x^2} + 1} \right) \\+ \left( {9 - 2x} \right)\left( {2{x^3} - 9{x^2} + 1} \right)'\\
= - 2\left( {2{x^3} - 9{x^2} + 1} \right) + \left( {9 - 2x} \right)\left( {6{x^2} - 18x} \right)\\
= - 4{x^3} + 18{x^2} - 2 + 54{x^2} - 162x - 12{x^3} + 36{x^2}\\
= - 16{x^3} + 108{x^2} - 162x - 2\\
b)\,\,y = \left( {6\sqrt x - \dfrac{1}{{{x^2}}}} \right)\left( {7x - 3} \right)\\y' = \left( {6\sqrt x  - \dfrac{1}{{{x^2}}}} \right)'\left( {7x - 3} \right) + \left( {6\sqrt x  - \dfrac{1}{{{x^2}}}} \right)\left( {7x - 3} \right)'\\
 = \left( {6.\dfrac{1}{{2\sqrt x }} - \dfrac{{ - \left( {{x^2}} \right)'}}{{{{\left( {{x^2}} \right)}^2}}}} \right)\left( {7x - 3} \right) + \left( {6\sqrt x  - \dfrac{1}{{{x^2}}}} \right).7\\ = \left( {\dfrac{3}{{\sqrt x }} + \dfrac{{2x}}{{{x^4}}}} \right)\left( {7x - 3} \right) + 7\left( {6\sqrt x  - \dfrac{1}{{{x^2}}}} \right)\\= \left( {\dfrac{3}{{\sqrt x }} + \dfrac{2}{{{x^3}}}} \right)\left( {7x - 3} \right) + 7\left( {6\sqrt x - \dfrac{1}{{{x^2}}}} \right)\\
= 21\sqrt x - \dfrac{9}{{\sqrt x }} + \dfrac{{14}}{{{x^2}}} - \dfrac{6}{{{x^3}}} + 42\sqrt x - \dfrac{7}{{{x^2}}}\\
= \dfrac{{ - 6}}{{{x^3}}} + \dfrac{7}{{{x^2}}} + 63\sqrt x - \dfrac{9}{{\sqrt x }}\\
c)\,\,y = \left( {x - 2} \right)\sqrt {{x^2} + 1} \\y' = \left( {x - 2} \right)'\sqrt {{x^2} + 1}  + \left( {x - 2} \right)\left( {\sqrt {{x^2} + 1} } \right)'\\ = 1.\sqrt {{x^2} + 1}  + \left( {x - 2} \right).\dfrac{{\left( {{x^2} + 1} \right)'}}{{2\sqrt {{x^2} + 1} }} \\= \sqrt {{x^2} + 1}  + \left( {x - 2} \right).\dfrac{{2x}}{{2\sqrt {{x^2} + 1} }}\\
 = \sqrt {{x^2} + 1} + \left( {x - 2} \right)\dfrac{x}{{\sqrt {{x^2} + 1} }}\\
 = \dfrac{{{x^2} + 1 + {x^2} - 2x}}{{\sqrt {{x^2} + 1} }}\\
= \dfrac{{2{x^2} - 2x + 1}}{{\sqrt {{x^2} + 1} }}\\
d)\,y = {\tan ^2}x - \cot {x^2}\\y' = \left( {{{\tan }^2}x} \right)' - \left( {\cot {x^2}} \right)'\\ = 2\tan x.\left( {\tan x} \right)'  - \left( {{x^2}} \right)'.\dfrac{{ - 1}}{{\sin ^2 {x^2}}}\\
= 2\tan x.\dfrac{1}{{{{\cos }^2}x}} + \dfrac{{2x}}{{{{\sin }^2}x^2}}\\
 = \dfrac{{2\sin x}}{{{{\cos }^3}x}} + \dfrac{{2x}}{{{{\sin }^2}x^2}}\\
e)y = \cos \dfrac{x}{{1 + x}}\\y' = \left( {\dfrac{x}{{x + 1}}} \right)'.\left( { - \sin \dfrac{x}{{x + 1}}} \right)\\ =  - \sin \left( {\dfrac{x}{{1 + x}}} \right).\dfrac{{\left( x \right)'\left( {1 + x} \right) - x.\left( {1 + x} \right)'}}{{{{\left( {1 + x} \right)}^2}}}\\
= - \sin \dfrac{x}{{1 + x}}.\left( {\dfrac{{1 + x - x}}{{{{\left( {1 + x} \right)}^2}}}} \right)\\
= - \dfrac{1}{{{{\left( {1 + x} \right)}^2}}}.\sin \dfrac{x}{{1 + x}}
\end{array}\)



Bài học liên quan

Từ khóa phổ biến