Bài 30 trang 31 SGK Hình học 10 Nâng cao

Tìm tọa độ của các vectơ sau trong mặt phẳng tọa độ


Đề bài

Tìm tọa độ của các vectơ sau trong mặt phẳng tọa độ

\(\eqalign{
& \overrightarrow a = - \overrightarrow i ;\,\,\,\overrightarrow b = 5\overrightarrow j ;\,\,\,\overrightarrow c = 3\overrightarrow i - 4\overrightarrow j \cr 
& \overrightarrow d = {1 \over 2}(\overrightarrow j - \overrightarrow i)\,;\,\,\,\overrightarrow e = 0,15\overrightarrow i \,\, + 1,3\overrightarrow {j} \cr&\overrightarrow f = \pi \overrightarrow i - (\cos {24^0})\overrightarrow {j}\cr} \)

Phương pháp giải - Xem chi tiết

Sử dụng lí thuyết: \(\overrightarrow a  = (x,\,y)\,\, \Rightarrow \,\overrightarrow a  = x\overrightarrow i  + y\overrightarrow j \)

Lời giải chi tiết

\(\begin{array}{l}
\overrightarrow a = - \overrightarrow i = \left( { - 1} \right)\overrightarrow i + 0\overrightarrow j \\
\Rightarrow \overrightarrow a = \left( { - 1;0} \right)\\
\overrightarrow b = 5\overrightarrow j = 0\overrightarrow i + 5\overrightarrow j \\
\Rightarrow \overrightarrow b = \left( {0;5} \right)\\
\overrightarrow c = 3\overrightarrow i - 4\overrightarrow j = 3\overrightarrow i + \left( { - 4} \right)\overrightarrow j \\
\Rightarrow \overrightarrow c = \left( {3; - 4} \right)\\
\overrightarrow d = \frac{1}{2}\left( {\overrightarrow j - \overrightarrow i } \right) = \frac{1}{2}\overrightarrow j - \frac{1}{2}\overrightarrow i \\
= \left( { - \frac{1}{2}} \right)\overrightarrow i + \frac{1}{2}\overrightarrow j \\
\Rightarrow \overrightarrow d = \left( { - \frac{1}{2};\frac{1}{2}} \right)\\
\overrightarrow e = 0,15\overrightarrow i + 1,3\overrightarrow j \\
\Rightarrow \overrightarrow e = \left( {0,15;1,3} \right)\\
\overrightarrow f = \pi \overrightarrow i - \cos {24^0}\overrightarrow j \\
= \pi \overrightarrow i + \left( { - \cos {{24}^0}} \right)\overrightarrow j \\
\Rightarrow \overrightarrow f = \left( {\pi ; - \cos {{24}^0}} \right)
\end{array}\)